Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Acta Biol Hung ; 69(1): 86-96, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29575914

ABSTRACT

This research was conducted in a greenhouse to evaluate the effects of exogenous application of salicylic acid (SA) (1 mM) and 6-benzylaminopurine (BAP) (50 µM) on physiological performance of faba bean (Vicia faba) under different levels of NaCl salinity (0, 4, 8 and 12 dS/m). The experiment was arranged as factorial on the bases of randomized complete block design in three replications. Leaf Na+ content, root and leaf soluble sugars, antioxidant enzymes activities such as catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and lipid peroxidation increased, but K+, K+/Na+ and membrane stability index (MSI) decreased as a result of salt stress. However, foliar sprays of BAP and particularly SA reduced Na+ content and lipid peroxidation, while enhanced the K+ content, K+/Na+, soluble sugars, antioxidant enzymes activities and MSI under different levels of salinity. It was, therefore, concluded that exogenous application of these growth regulators (GR) can considerably improve salt tolerance and physiological performance of faba bean.


Subject(s)
Antioxidants/metabolism , Cell Membrane/drug effects , Cytokinins/pharmacology , Salicylic Acid/pharmacology , Sugars/metabolism , Vicia faba/drug effects , Ascorbate Peroxidases/metabolism , Benzyl Compounds/pharmacology , Catalase/metabolism , Cell Membrane/metabolism , Lipid Peroxidation/drug effects , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Potassium/metabolism , Purines/pharmacology , Sodium/metabolism , Sodium Chloride/pharmacology , Vicia faba/metabolism
2.
Sci Rep ; 12(1): 14349, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35999251

ABSTRACT

The performance of dill plant may be affected by adverse environments such as salinity. Thus, this research was designed to evaluate changes in chemical composition and antioxidant activity of seed essential oil of dill (Anethum graveolens L.) in response to salinity (0, 5, 10 and 15 dS/m) and 1 mM of each hormonal treatments (gibberellic acid, salicylic acid, and cytokinin). Salicylic acid (SA) reduced Na+ content of roots and leaves by 15.4%, 30.9% and 12.4%, 24.3%, but enhanced K+ content by 29.8%, 51.6% and 76.6%, 73.4% under moderate and severe salinities, respectively. Essential oil yield was enhanced with progressing seed filling, despite decreasing essential oil percentage. Percentage of essential oil was increased under low and moderate salinities. Hormonal treatments, particularly SA enhanced seed mass and essential oil percentage, leading to enhanced essential oil yield. The amounts of most constituents were enhanced under moderate salinity. Foliar spray of SA and CK (cytokinin) increased almost all essential oil components, except dill ether and dill apiole, while the GA3 (gibberellic acid) treatment reduced most of the constituents. The α-fenchol was only induced by salt stress. The ß-pinene, 1-terpineol, cryptone, oxypeucedanin hydrate, α-thujene and P-α-dimethylstyrene were also specifically synthesized in SA treated plants under salinity. The highest TPC (total phenolic content) and antioxidant activity were recorded for essential oil of SA treated plants at mass maturity under moderate salinity. In general, the SA spray was the most effective treatment for improving essential oil quantity and quality of dill plants.


Subject(s)
Anethum graveolens , Oils, Volatile , Anethum graveolens/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Cytokinins , Hormones , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Salicylic Acid/pharmacology , Salt Stress
SELECTION OF CITATIONS
SEARCH DETAIL