Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nat Commun ; 12(1): 2624, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976143

ABSTRACT

The etiology of ulcerative colitis is poorly understood and is likely to involve perturbation of the complex interactions between the mucosal immune system and the commensal bacteria of the gut, with cytokines acting as important cross-regulators. Here we use IFN receptor-deficient mice in a dextran sulfate sodium (DSS) model of acute intestinal injury to study the contributions of type I and III interferons (IFN) to the initiation, progression and resolution of acute colitis. We find that mice lacking both types of IFN receptors exhibit enhanced barrier destruction, extensive loss of goblet cells and diminished proliferation of epithelial cells in the colon following DSS-induced damage. Impaired mucosal healing in double IFN receptor-deficient mice is driven by decreased amphiregulin expression, which IFN signaling can up-regulate in either the epithelial or hematopoietic compartment. Together, these data underscore the pleiotropic functions of IFNs and demonstrate that these critical antiviral cytokines also support epithelial regeneration following acute colonic injury.


Subject(s)
Colitis, Ulcerative/immunology , Interferons/metabolism , Intestinal Mucosa/pathology , Re-Epithelialization/immunology , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Dextran Sulfate/administration & dosage , Dextran Sulfate/toxicity , Disease Models, Animal , Epithelial Cells , Female , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Male , Mice , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Specific Pathogen-Free Organisms
2.
Curr Opin Immunol ; 64: 63-70, 2020 06.
Article in English | MEDLINE | ID: mdl-32387902

ABSTRACT

The recent advent of single-cell technologies has fast-tracked the discovery of multiple fibroblast subsets in tissues affected by autoimmune disease. In recent years, interest in lymph node fibroblasts that support and regulate immune cells has also grown, leading to an expanding framework of stromal cell subsets with distinct spatial, transcriptional, and functional characteristics. Inflammation can drive tissue fibroblasts to adopt a lymphoid tissue stromal cell phenotype, suggesting that fibroblasts in diseased tissues can have counterparts in lymphoid tissues. Here, we examine fibroblast subsets in tissues affected by autoimmunity in the context of knowledge gained from studies on lymph node fibroblasts, with the ultimate aim to better understand stromal cell heterogeneity in these immunologically reactive tissues.


Subject(s)
Autoimmunity , Fibroblasts , Humans , Lymph Nodes , Lymphoid Tissue , Stromal Cells
3.
Vaccine ; 36(26): 3842-3852, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29779923

ABSTRACT

Human respiratory syncytial virus (RSV) is the leading cause of lower airway disease in infants worldwide and repeatedly infects immunocompetent individuals throughout life. Severe lower airway RSV infection during infancy can be life-threatening, but is also associated with important sequelae including development of asthma and recurrent wheezing in later childhood. The basis for the inadequate, short-lived adaptive immune response to RSV infection is poorly understood, but it is widely recognized that RSV actively antagonizes Type I interferon (IFN) production. In addition to the induction of the anti-viral state, IFN production during viral infection is critical for downstream development of robust, long-lived immunity. Based on the hypothesis that a vaccine that induced robust IFN production would be protective, we previously constructed a Newcastle disease virus-vectored vaccine that expresses the F glycoprotein of RSV (NDV-F) and demonstrated that vaccinated mice had reduced lung viral loads and an enhanced IFN-γ response after RSV challenge. Here we show that vaccination also protected cotton rats from RSV challenge and induced long-lived neutralizing antibody production, even in RSV immune animals. Finally, pulmonary eosinophilia induced by RSV infection of unvaccinated cotton rats was prevented by vaccination. Overall, these data demonstrate enhanced protective immunity to RSV F when this protein is presented in the context of an abortive NDV infection.


Subject(s)
Immunity, Humoral , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Viruses/immunology , Animals , Disease Models, Animal , Female , Interferon-gamma/metabolism , Lung/virology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/isolation & purification , Respiratory Syncytial Viruses/isolation & purification , Sigmodontinae , Time Factors , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL