Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Nat Immunol ; 23(9): 1365-1378, 2022 09.
Article in English | MEDLINE | ID: mdl-35999394

ABSTRACT

CD28 and CTLA-4 (CD152) play essential roles in regulating T cell immunity, balancing the activation and inhibition of T cell responses, respectively. Although both receptors share the same ligands, CD80 and CD86, the specific requirement for two distinct ligands remains obscure. In the present study, we demonstrate that, although CTLA-4 targets both CD80 and CD86 for destruction via transendocytosis, this process results in separate fates for CTLA-4 itself. In the presence of CD80, CTLA-4 remained ligand bound, and was ubiquitylated and trafficked via late endosomes and lysosomes. In contrast, in the presence of CD86, CTLA-4 detached in a pH-dependent manner and recycled back to the cell surface to permit further transendocytosis. Furthermore, we identified clinically relevant mutations that cause autoimmune disease, which selectively disrupted CD86 transendocytosis, by affecting either CTLA-4 recycling or CD86 binding. These observations provide a rationale for two distinct ligands and show that defects in CTLA-4-mediated transendocytosis of CD86 are associated with autoimmunity.


Subject(s)
Antigens, CD , CD28 Antigens , Antigens, CD/metabolism , Antigens, Differentiation/metabolism , B7-1 Antigen , B7-2 Antigen/genetics , CD28 Antigens/metabolism , CTLA-4 Antigen/genetics , Cell Adhesion Molecules , Ligands , Lymphocyte Activation
2.
Immunity ; 51(6): 972-974, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31951541

ABSTRACT

Targeting the CTLA-4 and PD-1 "checkpoints" is an effective treatment for a number of cancers. In this issue of Immunity, Hui et al. reveal that interaction between a CTLA-4 ligand, CD80, and its counterpart in the PD-1 pathway, PD-L1, affects both PD-1 and CTLA-4 function, raising new questions about the biological effects of using checkpoint inhibitors alone and in combination.


Subject(s)
B7-H1 Antigen , CD28 Antigens , B7-1 Antigen , CTLA-4 Antigen , Programmed Cell Death 1 Receptor
3.
EMBO J ; 42(5): e111556, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36727298

ABSTRACT

CTLA-4 and PD-1 are key immune checkpoint receptors that are targeted in the treatment of cancer. A recently identified physical interaction between the respective ligands, CD80 and PD-L1, has been shown to block PD-L1/PD-1 binding and to prevent PD-L1 inhibitory functions. Since CTLA-4 is known to capture and degrade its ligands via transendocytosis, we investigated the interplay between CD80 transendocytosis and CD80/PD-L1 interaction. We find that transendocytosis of CD80 results in a time-dependent recovery of PD-L1 availability that correlates with CD80 removal. Moreover, CD80 transendocytosis is highly specific in that only CD80 is internalised, while its heterodimeric PD-L1 partner remains on the plasma membrane of the antigen-presenting cell (APC). CTLA-4 interactions with CD80 do not appear to be inhibited by PD-L1, but efficient removal of CD80 requires an intact CTLA-4 cytoplasmic domain, distinguishing this process from more general trogocytosis and simple CTLA-4 binding to CD80/PD-L1 complexes. These data are consistent with CTLA-4 acting as modulator of PD-L1:PD-1 interactions via control of CD80.


Subject(s)
Immune Checkpoint Proteins , Programmed Cell Death 1 Receptor , CTLA-4 Antigen , Programmed Cell Death 1 Receptor/genetics , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Ligands , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , Cell Adhesion Molecules
5.
Nature ; 583(7814): 90-95, 2020 07.
Article in English | MEDLINE | ID: mdl-32499645

ABSTRACT

Primary immunodeficiency (PID) is characterized by recurrent and often life-threatening infections, autoimmunity and cancer, and it poses major diagnostic and therapeutic challenges. Although the most severe forms of PID are identified in early childhood, most patients present in adulthood, typically with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is prevalent and up to 10% develop lymphoid malignancies1-3. Consequently, in sporadic (or non-familial) PID genetic diagnosis is difficult and the role of genetics is not well defined. Here we address these challenges by performing whole-genome sequencing in a large PID cohort of 1,318 participants. An analysis of the coding regions of the genome in 886 index cases of PID found that disease-causing mutations in known genes that are implicated in monogenic PID occurred in 10.3% of these patients, and a Bayesian approach (BeviMed4) identified multiple new candidate PID-associated genes, including IVNS1ABP. We also examined the noncoding genome, and found deletions in regulatory regions that contribute to disease causation. In addition, we used a genome-wide association study to identify loci that are associated with PID, and found evidence for the colocalization of-and interplay between-novel high-penetrance monogenic variants and common variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common variants to the variable penetrance and phenotypic complexity that are observed in PID. Thus, using a cohort-based whole-genome-sequencing approach in the diagnosis of PID can increase diagnostic yield and further our understanding of the key pathways that influence immune responsiveness in humans.


Subject(s)
Primary Immunodeficiency Diseases/genetics , Whole Genome Sequencing , Actin-Related Protein 2-3 Complex/genetics , Bayes Theorem , Cohort Studies , Female , Genome-Wide Association Study , Humans , Male , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , RNA-Binding Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Suppressor of Cytokine Signaling 1 Protein/genetics , Transcription Factors/genetics
6.
Proc Natl Acad Sci U S A ; 120(31): e2300895120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487077

ABSTRACT

Anti-CTLA-4 antibodies have successfully elicited durable tumor regression in the clinic; however, long-term benefit is limited to a subset of patients for select cancer indications. The incomplete understanding of their mechanism of action has hindered efforts at improvement, with conflicting hypotheses proposing either antagonism of the CTLA-4:B7 axis or Fc effector-mediated regulatory T cell (Treg) depletion governing efficacy. Here, we report the engineering of a nonantagonistic CTLA-4 binding domain (b1s1e2) that depletes intratumoral Tregs as an Fc fusion. Comparison of b1s1e2-Fc to 9d9, an antagonistic anti-CTLA-4 antibody, allowed for interrogation of the separate contributions of CTLA-4 antagonism and Treg depletion to efficacy. Despite equivalent levels of intratumoral Treg depletion, 9d9 achieved more long-term cures than b1s1e2-Fc in MC38 tumors, demonstrating that CTLA-4 antagonism provided additional survival benefit. Consistent with prior reports that CTLA-4 antagonism enhances priming, treatment with 9d9, but not b1s1e2-Fc, increased the percentage of activated T cells in the tumor-draining lymph node (tdLN). Treg depletion with either construct was restricted to the tumor due to insufficient surface CTLA-4 expression on Tregs in other compartments. Through intratumoral administration of diphtheria toxin in Foxp3-DTR mice, we show that depletion of both intratumoral and nodal Tregs provided even greater survival benefit than 9d9, consistent with Treg-driven restraint of priming in the tdLN. Our data demonstrate that anti-CTLA-4 therapies require both CTLA-4 antagonism and intratumoral Treg depletion for maximum efficacy-but that potential future therapies also capable of depleting nodal Tregs could show efficacy in the absence of CTLA-4 antagonism.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Mice , Animals , Neoplasms/drug therapy , Neoplasms/genetics , CTLA-4 Antigen , Lymphocyte Depletion
7.
Immunology ; 164(1): 106-119, 2021 09.
Article in English | MEDLINE | ID: mdl-33960403

ABSTRACT

CTLA-4 is an essential regulator of T-cell immune responses whose intracellular trafficking is a hallmark of its expression. Defects in CTLA-4 trafficking due to LRBA deficiency cause profound autoimmunity in humans. CTLA-4 rapidly internalizes via a clathrin-dependent pathway followed by poorly characterized recycling and degradation fates. Here, we explore the impact of manipulating Rab GTPases and LRBA on CTLA-4 expression to determine how these proteins affect CTLA-4 trafficking. We observe that CTLA-4 is distributed across several compartments marked by Rab5, Rab7 and Rab11 in both HeLa and Jurkat cells. Dominant negative (DN) inhibition of Rab5 resulted in increased surface CTLA-4 expression and reduced internalization and degradation. We also observed that constitutively active (CA) Rab11 increased, whereas DN Rab11 decreased CTLA-4 surface expression via an impact on CTLA-4 recycling, indicating CTLA-4 shares similarities with other recycling receptors such as EGFR. Additionally, we studied the impact of manipulating both LRBA and Rab11 on CTLA-4 trafficking. In Jurkat cells, LRBA deficiency was associated with markedly impaired CTLA-4 recycling and increased degradation that could not be corrected by expressing CA Rab11. Moreover LRBA deficiency reduced CTLA-4 colocalization with Rab11, suggesting that LRBA is upstream of Rab11. These results show that LRBA is required for effective CTLA-4 recycling by delivering CTLA-4 to Rab11 recycling compartments, and in its absence, CTLA-4 fails to recycle and undergoes degradation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , CTLA-4 Antigen/metabolism , T-Lymphocytes/immunology , Adaptor Proteins, Signal Transducing/genetics , Animals , Autoimmunity , Clathrin/metabolism , HeLa Cells , Humans , Jurkat Cells , Mice , Protein Transport , Proteolysis , Signal Transduction , rab GTP-Binding Proteins , rab5 GTP-Binding Proteins/genetics
8.
Genes Immun ; 21(6-8): 390-408, 2020 12.
Article in English | MEDLINE | ID: mdl-33223527

ABSTRACT

T-cell activation is a critical driver of immune responses. The CD28 costimulation is an essential regulator of CD4 T-cell responses, however, its relative importance in naive and memory T cells is not fully understood. Using different model systems, we observe that human memory T cells are more sensitive to CD28 costimulation than naive T cells. To deconvolute how the T-cell receptor (TCR) and CD28 orchestrate activation of human T cells, we stimulate cells using varying intensities of TCR and CD28 and profiled gene expression. We show that genes involved in cell cycle progression and division are CD28-driven in memory cells, but under TCR control in naive cells. We further demonstrate that T-helper differentiation and cytokine expression are controlled by CD28. Using chromatin accessibility profiling, we observe that AP1 transcriptional regulation is enriched when both TCR and CD28 are engaged, whereas open chromatin near CD28-sensitive genes is enriched for NF-kB motifs. Lastly, we show that CD28-sensitive genes are enriched in GWAS regions associated with immune diseases, implicating a role for CD28 in disease development. Our study provides important insights into the differential role of costimulation in naive and memory T-cell responses and disease susceptibility.


Subject(s)
CD28 Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Immunologic Memory/genetics , Lymphocyte Activation/genetics , Transcriptome , Adult , Animals , CHO Cells , Cell Line , Cell Line, Tumor , Cells, Cultured , Cricetinae , Cricetulus , Cytokines/genetics , Cytokines/metabolism , Female , Humans , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology
9.
Blood ; 131(1): 58-67, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29118008

ABSTRACT

CD28 and CTLA-4 are members of a family of immunoglobulin-related receptors that are responsible for various aspects of T-cell immune regulation. The family includes CD28, CTLA-4, and ICOS as well as other proteins, including PD-1, BTLA, and TIGIT. These receptors have both stimulatory (CD28, ICOS) and inhibitory roles (CTLA-4, PD-1, BTLA, and TIGIT) in T-cell function. Increasingly, these pathways are targeted as part of immune modulatory strategies to treat cancers, referred to generically as immune checkpoint blockade, and conversely to treat autoimmunity and CTLA-4 deficiency. Here, we focus on the biology of the CD28/CTLA-4 pathway as a framework for understanding the impacts of therapeutic manipulation of this pathway.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Immunotherapy , Neoplasms/drug therapy , Neoplasms/immunology , Animals , CTLA-4 Antigen/immunology , Humans
10.
Blood ; 129(11): 1458-1468, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28159733

ABSTRACT

Heterozygous CTLA-4 deficiency has been reported as a monogenic cause of common variable immune deficiency with features of immune dysregulation. Direct mutation in CTLA-4 leads to defective regulatory T-cell (Treg) function associated with impaired ability to control levels of the CTLA-4 ligands, CD80 and CD86. However, additional mutations affecting the CTLA-4 pathway, such as those recently reported for LRBA, indirectly affect CTLA-4 expression, resulting in clinically similar disorders. Robust phenotyping approaches sensitive to defects in the CTLA-4 pathway are therefore required to inform understanding of such immune dysregulation syndromes. Here, we describe assays capable of distinguishing a variety of defects in the CTLA-4 pathway. Assessing total CTLA-4 expression levels was found to be optimal when restricting analysis to the CD45RA-Foxp3+ fraction. CTLA-4 induction following stimulation, and the use of lysosomal-blocking compounds, distinguished CTLA-4 from LRBA mutations. Short-term T-cell stimulation improved the capacity for discriminating the Foxp3+ Treg compartment, clearly revealing Treg expansions in these disorders. Finally, we developed a functionally orientated assay to measure ligand uptake by CTLA-4, which is sensitive to ligand-binding or -trafficking mutations, that would otherwise be difficult to detect and that is appropriate for testing novel mutations in CTLA-4 pathway genes. These approaches are likely to be of value in interpreting the functional significance of mutations in the CTLA-4 pathway identified by gene-sequencing approaches.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , CTLA-4 Antigen/genetics , Mutation , CTLA-4 Antigen/metabolism , Cell Line , Common Variable Immunodeficiency/genetics , Forkhead Transcription Factors/analysis , Humans , Immune System Phenomena/genetics , Ligands , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
11.
J Immunol ; 198(1): 528-537, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27881707

ABSTRACT

Affinity- and stability-engineered variants of CTLA4-Ig fusion molecules with enhanced pharmacokinetic profiles could yield improved therapies with the potential of higher efficacy and greater convenience to patients. In this study, to our knowledge, we have, for the first time, used in vitro evolution to simultaneously optimize CTLA4 affinity and stability. We selected for improved binding to both ligands, CD80 and CD86, and screened as dimeric Fc fusions directly in functional assays to identify variants with stronger suppression of in vitro T cell activation. The majority of CTLA4 molecules showing the largest potency gains in primary in vitro and ex vivo human cell assays, using PBMCs from type 1 diabetes patients, had significant improvements in CD80, but only modest gains in CD86 binding. We furthermore observed different potency rankings between our lead molecule MEDI5265, abatacept, and belatacept, depending on which type of APC was used, with MEDI5265 consistently being the most potent. We then created fusions of both stability- and potency-optimized CTLA4 moieties with human Fc variants conferring extended plasma t1/2 In a cynomolgus model of T cell-dependent Ab response, the CTLA4-Ig variant MEDI5265 could be formulated at >100 mg/ml for s.c. administration and showed superior efficacy and significantly prolonged serum t1/2 The combination of higher stability and potency with prolonged pharmacokinetics could be compatible with very infrequent, s.c. dosing while maintaining a similar level of immune suppression to more frequently and i.v. administered licensed therapies.


Subject(s)
Abatacept/pharmacology , Drug Design , Immunosuppressive Agents/pharmacology , Abatacept/chemistry , Animals , B7-1 Antigen/immunology , B7-2 Antigen , Drug Stability , Humans , Immunosuppressive Agents/chemistry , Protein Binding/immunology
12.
J Allergy Clin Immunol ; 142(6): 1932-1946, 2018 12.
Article in English | MEDLINE | ID: mdl-29729943

ABSTRACT

BACKGROUND: Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a negative immune regulator. Heterozygous CTLA4 germline mutations can cause a complex immune dysregulation syndrome in human subjects. OBJECTIVE: We sought to characterize the penetrance, clinical features, and best treatment options in 133 CTLA4 mutation carriers. METHODS: Genetics, clinical features, laboratory values, and outcomes of treatment options were assessed in a worldwide cohort of CTLA4 mutation carriers. RESULTS: We identified 133 subjects from 54 unrelated families carrying 45 different heterozygous CTLA4 mutations, including 28 previously undescribed mutations. Ninety mutation carriers were considered affected, suggesting a clinical penetrance of at least 67%; median age of onset was 11 years, and the mortality rate within affected mutation carriers was 16% (n = 15). Main clinical manifestations included hypogammaglobulinemia (84%), lymphoproliferation (73%), autoimmune cytopenia (62%), and respiratory (68%), gastrointestinal (59%), or neurological features (29%). Eight affected mutation carriers had lymphoma, and 3 had gastric cancer. An EBV association was found in 6 patients with malignancies. CTLA4 mutations were associated with lymphopenia and decreased T-, B-, and natural killer (NK) cell counts. Successful targeted therapies included application of CTLA-4 fusion proteins, mechanistic target of rapamycin inhibitors, and hematopoietic stem cell transplantation. EBV reactivation occurred in 2 affected mutation carriers after immunosuppression. CONCLUSIONS: Affected mutation carriers with CTLA-4 insufficiency can present in any medical specialty. Family members should be counseled because disease manifestation can occur as late as 50 years of age. EBV- and cytomegalovirus-associated complications must be closely monitored. Treatment interventions should be coordinated in clinical trials.


Subject(s)
CTLA-4 Antigen/genetics , Immunologic Deficiency Syndromes/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Immunologic Deficiency Syndromes/diagnostic imaging , Immunologic Deficiency Syndromes/therapy , Male , Middle Aged , Mutation , Phenotype , Young Adult
13.
Biophys J ; 115(7): 1330-1343, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30219287

ABSTRACT

CTLA4 is an essential negative regulator of T-cell immune responses and a key checkpoint regulating autoimmunity and antitumor responses. Genetic mutations resulting in quantitative defects in the CTLA4 pathway are also associated with the development of immune dysregulation syndromes in humans. It has been proposed that CTLA4 functions to remove its ligands CD80 and CD86 from opposing cells by a process known as transendocytosis. A quantitative characterization of CTLA4 synthesis, endocytosis, degradation, and recycling and how these affect its function is currently lacking. In a combined in vitro and in silico study, we developed a mathematical model and identified these trafficking parameters. Our model predicts optimal ligand removal in an intermediate affinity range. The intracellular CTLA4 pool as well as fast internalization, recovery of free CTLA4 from internalized complexes, and recycling is critical for sustained functionality. CD80-CTLA4 interactions are predicted to dominate over CD86-CTLA4. Implications of these findings in the context of control of antigen-presenting cells by regulatory T cells and of pathologic genetic deficiencies are discussed. The presented mathematical model can be reused in the community beyond these questions to better understand other trafficking receptors and study the impact of CTLA4 targeting drugs.


Subject(s)
CTLA-4 Antigen/metabolism , Animals , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , CHO Cells , Cricetulus , Gene Expression Regulation , Kinetics , Ligands , Models, Biological , Protein Binding
14.
Clin Immunol ; 188: 94-102, 2018 03.
Article in English | MEDLINE | ID: mdl-29305966

ABSTRACT

The CTLA-4 checkpoint regulates the activation of T cells. Individuals with heterozygous mutations in CTLA-4 have a complex phenotype typically characterized by antibody deficiency alongside variable autoimmunity. Despite severe disease in some individuals, others remain largely unaffected with reasons for this variation unknown. We studied a large family carrying a single point mutation in CTLA-4 leading to an amino acid change R75W and compared both unaffected with affected individuals. We measured a variety of features pertaining to T cell and CTLA-4 biology and observed that at the cellular level there was complete penetrance of CTLA-4 mutations. Accordingly, unaffected individuals were indistinguishable from those with disease in terms of level of CTLA-4 expression, percentage of Treg, upregulation of CTLA-4 upon stimulation and proliferation of CD4 T cells. We conclude that the wide variation in disease phenotype is influenced by immune variation outside of CTLA-4 biology.


Subject(s)
CD28 Antigens/immunology , CTLA-4 Antigen/immunology , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , CD28 Antigens/metabolism , CTLA-4 Antigen/deficiency , CTLA-4 Antigen/genetics , Diarrhea/genetics , Diarrhea/immunology , Diarrhea/metabolism , Family Health , Female , Humans , Intestinal Diseases/genetics , Intestinal Diseases/immunology , Intestinal Diseases/metabolism , Lymphocyte Activation/genetics , Male , Mutation, Missense , Pedigree , Severity of Illness Index , Signal Transduction/immunology , T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
15.
J Autoimmun ; 88: 50-60, 2018 03.
Article in English | MEDLINE | ID: mdl-29066221

ABSTRACT

1,25-dihydroxyvitaminD3 (1,25(OH)2D3), has potent anti-inflammatory effects, including suppression of IL-17 + and IFNγ+ T cells implicated in rheumatoid arthritis (RA), but efficacy at the site of active disease is unclear. To investigate this, T cells from synovial fluid (SF) and paired blood of patients with active RA were studied. 1,25(OH)2D3 had significantly less suppressive effect on Th17 cells (IL-17+IFNγ-) and Th17.1 cells (IL-17+IFNγ+) from SF compared to those from blood, and had no effect on SF CD4+ or CD8+ IFNγ+ T cell frequencies. Memory T cells (CD45RO+) predominate in SF, and 1,25(OH)2D3 had less effect on memory T cells relative to naïve (CD45RA+) T cells. RT-PCR and flow cytometry showed that this was not due to decreased expression of the vitamin D receptor or its transcription partners in memory T cells. Further studies using stimulated CD4+ T cells sorted according to IL-17 and IFNγ expression confirmed the ability of 1,25(OH)2D3 to suppress pre-existing cytokines. However, 1,25(OH)2D3 was most effective at suppressing de novo IL-17 and IFNγ induction. Correspondingly, T cell responses to 1,25(OH)2D3 correlated directly with capacity for phenotype change, which was lower in cells from SF compared to blood. These findings indicate that anti-inflammatory effects of 1,25(OH)2D3 in active RA are impaired because of reduced effects on phenotype-committed, inflammatory memory T cells that are enriched in SF. Restoration of 1,25(OH)2D3 responses in memory T cells may provide a new strategy for treatment of inflammatory diseases such as RA.


Subject(s)
Arthritis, Rheumatoid/immunology , Calcitriol/pharmacology , Immunosuppressive Agents/pharmacology , Joints/immunology , Th17 Cells/physiology , Adult , Aged , Aged, 80 and over , Cells, Cultured , Female , Humans , Immunologic Memory , Interferon-gamma/metabolism , Interleukin-17/metabolism , Male , Middle Aged , Synovial Fluid/immunology
16.
Trends Immunol ; 36(2): 63-70, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25582039

ABSTRACT

The mechanism of action of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) remains surprisingly unclear. Regulatory T (Treg) cells can use CTLA-4 to elicit suppression; however, CTLA-4 also operates in conventional T cells, reputedly by triggering inhibitory signals. Recently, interactions mediated via the CTLA-4 cytoplasmic domain have been shown to preferentially affect Treg cells, yet other evidence suggests that the extracellular domain of CTLA-4 is sufficient to elicit suppression. Here, we discuss these paradoxical findings in the context of CTLA-4-mediated ligand regulation. We propose that the function of CTLA-4 cytoplasmic domain is not to transmit inhibitory signals but to precisely control the turnover, cellular location, and membrane delivery of CTLA-4 to facilitate its central function: regulating the access of CD28 to their shared ligands.


Subject(s)
CTLA-4 Antigen/genetics , CTLA-4 Antigen/metabolism , Signal Transduction , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , CTLA-4 Antigen/chemistry , Cell Movement/genetics , Down-Regulation , Humans , Ligands , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
17.
Proc Natl Acad Sci U S A ; 112(2): 524-9, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25548162

ABSTRACT

Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) is an essential regulator of T-cell responses, and its absence precipitates lethal T-cell hyperactivity. However, whether CTLA-4 acts simply to veto the activation of certain clones or plays a more nuanced role in shaping the quality of T-cell responses is not clear. Here we report that T cells in CTLA-4-deficient mice show spontaneous T-follicular helper (T(FH)) differentiation in vivo, and this is accompanied by the appearance of large germinal centers (GCs). Remarkably, short-term blockade with anti-CTLA-4 antibody in wild-type mice is sufficient to elicit T(FH) generation and GC development. The latter occurs in a CD28-dependent manner, consistent with the known role of CTLA-4 in regulating the CD28 pathway. CTLA-4 can act by down-regulating CD80 and CD86 on antigen presenting cells (APCs), thereby altering the level of CD28 engagement. To mimic reduced CD28 ligation, we used mice heterozygous for CD28, revealing that the magnitude of CD28 engagement is tightly linked to the propensity for T(FH) differentiation. In contrast, other parameters of T-cell activation, including CD62L down-regulation and Ki67 expression, were relatively insensitive to altered CD28 level. Altered T(FH) generation as a result of graded reduction in CD28 was associated with decreased numbers of GC B cells and a reduction in overall GC size. These data support a model in which CTLA-4 control of immunity goes beyond vetoing T-cell priming and encompasses the regulation of T(FH) differentiation by graded control of CD28 engagement.


Subject(s)
CD28 Antigens/metabolism , CTLA-4 Antigen/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , Adaptive Immunity , Animals , Autoantibodies/biosynthesis , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , CD28 Antigens/deficiency , CD28 Antigens/genetics , CTLA-4 Antigen/deficiency , CTLA-4 Antigen/genetics , Cell Differentiation/immunology , Germinal Center/cytology , Germinal Center/immunology , Heterozygote , Ligands , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Immunological
18.
J Allergy Clin Immunol ; 140(6): 1660-1670.e16, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28400115

ABSTRACT

BACKGROUND: Thymus transplantation is a promising strategy for the treatment of athymic complete DiGeorge syndrome (cDGS). METHODS: Twelve patients with cDGS underwent transplantation with allogeneic cultured thymus. OBJECTIVE: We sought to confirm and extend the results previously obtained in a single center. RESULTS: Two patients died of pre-existing viral infections without having thymopoiesis, and 1 late death occurred from autoimmune thrombocytopenia. One infant had septic shock shortly after transplantation, resulting in graft loss and the need for a second transplant. Evidence of thymopoiesis developed from 5 to 6 months after transplantation in 10 patients. Median circulating naive CD4 counts were 44 × 106/L (range, 11-440 × 106/L) and 200 × 106/L (range, 5-310 × 106/L) at 12 and 24 months after transplantation and T-cell receptor excision circles were 2,238/106 T cells (range, 320-8,807/106 T cells) and 4,184/106 T cells (range, 1,582-24,596/106 T cells). Counts did not usually reach normal levels for age, but patients were able to clear pre-existing infections and those acquired later. At a median of 49 months (range, 22-80 months), 8 have ceased prophylactic antimicrobials, and 5 have ceased immunoglobulin replacement. Histologic confirmation of thymopoiesis was seen in 7 of 11 patients undergoing biopsy of transplanted tissue, including 5 showing full maturation through to the terminal stage of Hassall body formation. Autoimmune regulator expression was also demonstrated. Autoimmune complications were seen in 7 of 12 patients. In 2 patients early transient autoimmune hemolysis settled after treatment and did not recur. The other 5 experienced ongoing autoimmune problems, including thyroiditis (3), hemolysis (1), thrombocytopenia (4), and neutropenia (1). CONCLUSIONS: This study confirms the previous reports that thymus transplantation can reconstitute T cells in patients with cDGS but with frequent autoimmune complications in survivors.


Subject(s)
Autoimmune Diseases/immunology , DiGeorge Syndrome/therapy , Organ Transplantation , Postoperative Complications/immunology , T-Lymphocytes/immunology , Thymus Gland/transplantation , Autoimmune Diseases/etiology , Cells, Cultured , Child , Child, Preschool , DiGeorge Syndrome/immunology , Europe , Female , Humans , Immune Reconstitution , Infant , Male , Organ Culture Techniques , Transplantation, Homologous , Treatment Outcome
19.
J Immunol ; 195(6): 2657-65, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26276872

ABSTRACT

Inhibition of the CD28:CD80/CD86 T cell costimulatory pathway has emerged as an effective strategy for the treatment of T cell-mediated inflammatory diseases. However, patient responses to CD28-ligand blockade by abatacept (CTLA-4-Ig) in conditions such as rheumatoid arthritis are variable and often suboptimal. In this study, we show that the extent to which abatacept suppresses T cell activation is influenced by the strength of TCR stimulation, with high-strength TCR stimulation being associated with relative abatacept insensitivity. Accordingly, cyclosporin A, an inhibitor of T cell stimulation via the TCR, synergized with abatacept to inhibit T cell activation. We also observed that 1,25-dihydroxyvitamin D3 enhanced the inhibition of T cell activation by abatacept, strongly inhibiting T cell activation driven by cross-linked anti-CD3, but with no effect upon anti-CD28 driven stimulation. Thus, like cyclosporin A, 1,25-dihydroxyvitamin D3 inhibits TCR-driven activation, thereby promoting abatacept sensitivity. Vitamin D3 supplementation may therefore be a useful adjunct for the treatment of conditions such as rheumatoid arthritis in combination with abatacept to promote the efficacy of treatment.


Subject(s)
Abatacept/pharmacology , CD28 Antigens/antagonists & inhibitors , Calcitriol/pharmacology , Immunosuppressive Agents/pharmacology , T-Lymphocytes/immunology , Animals , Apoptosis/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , CD28 Antigens/immunology , CHO Cells , Cell Line , Cell Proliferation/drug effects , Cricetulus , Cyclosporine/pharmacology , Inflammation/immunology , Lymphocyte Activation/drug effects , Receptors, Antigen, T-Cell/antagonists & inhibitors , Receptors, Antigen, T-Cell/immunology
20.
J Immunol ; 194(5): 2148-59, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25632005

ABSTRACT

Manipulation of the CD28/CTLA-4 pathway is at the heart of a number of immunomodulatory approaches used in both autoimmunity and cancer. Although it is clear that CTLA-4 is a critical regulator of T cell responses, the immunological contexts in which CTLA-4 controls immune responses are not well defined. In this study, we show that whereas CD80/CD86-dependent activation of resting human T cells caused extensive T cell proliferation and robust CTLA-4 expression, in this context CTLA-4 blocking Abs had no impact on the response. In contrast, in settings where CTLA-4(+) cells were present as "regulators," inhibition of resting T cell responses was dependent on CTLA-4 expression and specifically related to the number of APC. At low numbers of APC or low levels of ligand, CTLA-4-dependent suppression was highly effective whereas at higher APC numbers or high levels of ligand, inhibition was lost. Accordingly, the degree of suppression correlated with the level of CD86 expression remaining on the APC. These data reveal clear rules for the inhibitory function of CTLA-4 on regulatory T cells, which are predicted by its ability to remove ligands from APC.


Subject(s)
Antibodies/pharmacology , Dendritic Cells/immunology , Models, Immunological , T-Lymphocytes, Regulatory/immunology , Animals , B7-1 Antigen/genetics , B7-1 Antigen/immunology , B7-2 Antigen/genetics , B7-2 Antigen/immunology , CD28 Antigens/genetics , CD28 Antigens/immunology , CHO Cells , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Cell Count , Cell Proliferation , Cricetulus , Dendritic Cells/cytology , Dendritic Cells/drug effects , Endocytosis , Gene Expression Regulation , Humans , Lymphocyte Activation/drug effects , Primary Cell Culture , Signal Transduction , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/drug effects , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL