Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cell Mol Life Sci ; 78(7): 3355-3367, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33439270

ABSTRACT

Neuroferritinopathy is a rare autosomal dominant inherited movement disorder caused by alteration of the L-ferritin gene that results in the production of a ferritin molecule that is unable to properly manage iron, leading to the presence of free redox-active iron in the cytosol. This form of iron has detrimental effects on cells, particularly severe for neuronal cells, which are highly sensitive to oxidative stress. Although very rare, the disorder is notable for two reasons. First, neuroferritinopathy displays features also found in a larger group of disorders named Neurodegeneration with Brain Iron Accumulation (NBIA), such as iron deposition in the basal ganglia and extrapyramidal symptoms; thus, the elucidation of its pathogenic mechanism may contribute to clarifying the incompletely understood aspects of NBIA. Second, neuroferritinopathy shows the characteristic signs of an accelerated process of aging; thus, it can be considered an interesting model to study the progress of aging. Here, we will review the clinical and neurological features of neuroferritinopathy and summarize biochemical studies and data from cellular and animal models to propose a pathogenic mechanism of the disorder.


Subject(s)
Apoferritins/metabolism , Iron Metabolism Disorders/pathology , Iron/metabolism , Neuroaxonal Dystrophies/pathology , Animals , Humans , Iron Metabolism Disorders/metabolism , Neuroaxonal Dystrophies/metabolism
2.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008695

ABSTRACT

During infections, the host redistributes iron in order to starve pathogens from this nutrient. Several proteins are involved in iron absorption, transport, and storage. Ferritin is the most important iron storage protein. It is composed of variable proportions of two peptides, the L- and H-ferritins (FTL and FTH). We previously showed that macrophages increase their expression of FTH1 when they are infected in vitro with Mycobacterium avium, without a significant increase in FTL. In this work, we investigated the role of macrophage FTH1 in M. avium infection in vivo. We found that mice deficient in FTH1 in myeloid cells are more resistant to M. avium infection, presenting lower bacterial loads and lower levels of proinflammatory cytokines than wild-type littermates, due to the lower levels of available iron in the tissues. Importantly, we also found that FTH1 produced by myeloid cells in response to infection may be found in circulation and that it plays a key role in iron redistribution. Specifically, in the absence of FTH1 in myeloid cells, increased expression of ferroportin is observed in liver granulomas and increased iron accumulation occurs in hepatocytes. These results highlight the importance of FTH1 expression in myeloid cells for iron redistribution during infection.


Subject(s)
Blood Circulation , Ferritins/blood , Iron/metabolism , Liver/metabolism , Mycobacterium Infections/blood , Myeloid Cells/metabolism , Animals , Cation Transport Proteins/metabolism , Ferritins/deficiency , Gene Expression Regulation , Inflammation/pathology , Iron Deficiencies/blood , Iron Deficiencies/metabolism , Iron Overload/blood , Iron Overload/metabolism , Mice , Mycobacterium Infections/genetics , Mycobacterium avium/growth & development , Mycobacterium avium/physiology
3.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352696

ABSTRACT

COASY protein-associated neurodegeneration (CoPAN) is a rare but devastating genetic autosomal recessive disorder of inborn error of CoA metabolism, which shares with pantothenate kinase-associated neurodegeneration (PKAN) similar features, such as dystonia, parkinsonian traits, cognitive impairment, axonal neuropathy, and brain iron accumulation. These two disorders are part of the big group of neurodegenerations with brain iron accumulation (NBIA) for which no effective treatment is available at the moment. To date, the lack of a mammalian model, fully recapitulating the human disorder, has prevented the elucidation of pathogenesis and the development of therapeutic approaches. To gain new insights into the mechanisms linking CoA metabolism, iron dyshomeostasis, and neurodegeneration, we generated and characterized the first CoPAN disease mammalian model. Since CoA is a crucial metabolite, constitutive ablation of the Coasy gene is incompatible with life. On the contrary, a conditional neuronal-specific Coasy knock-out mouse model consistently developed a severe early onset neurological phenotype characterized by sensorimotor defects and dystonia-like movements, leading to premature death. For the first time, we highlighted defective brain iron homeostasis, elevation of iron, calcium, and magnesium, together with mitochondrial dysfunction. Surprisingly, total brain CoA levels were unchanged, and no signs of neurodegeneration were present.


Subject(s)
Coenzyme A Ligases/physiology , Hemochromatosis/pathology , Iron/metabolism , Mitochondrial Diseases/pathology , Motor Disorders/pathology , Pantothenate Kinase-Associated Neurodegeneration/complications , Synapsins/physiology , Animals , Coenzyme A/metabolism , Female , Hemochromatosis/etiology , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/etiology , Mitochondrial Diseases/metabolism , Motor Disorders/etiology , Motor Disorders/metabolism
4.
Int J Mol Sci ; 21(10)2020 May 22.
Article in English | MEDLINE | ID: mdl-32456086

ABSTRACT

Pantothenate Kinase-associated Neurodegeneration (PKAN) belongs to a wide spectrum of diseases characterized by brain iron accumulation and extrapyramidal motor signs. PKAN is caused by mutations in PANK2, encoding the mitochondrial pantothenate kinase 2, which is the first enzyme of the biosynthesis of Coenzyme A. We established and characterized glutamatergic neurons starting from previously developed PKAN Induced Pluripotent Stem Cells (iPSCs). Results obtained by inductively coupled plasma mass spectrometry indicated a higher amount of total cellular iron in PKAN glutamatergic neurons with respect to controls. PKAN glutamatergic neurons, analyzed by electron microscopy, exhibited electron dense aggregates in mitochondria that were identified as granules containing calcium phosphate. Calcium homeostasis resulted compromised in neurons, as verified by monitoring the activity of calcium-dependent enzyme calpain1, calcium imaging and voltage dependent calcium currents. Notably, the presence of calcification in the internal globus pallidus was confirmed in seven out of 15 genetically defined PKAN patients for whom brain CT scan was available. Moreover, we observed a higher prevalence of brain calcification in females. Our data prove that high amount of iron coexists with an impairment of cytosolic calcium in PKAN glutamatergic neurons, indicating both, iron and calcium dys-homeostasis, as actors in pathogenesis of the disease.


Subject(s)
Calcium/metabolism , Iron/metabolism , Mitochondria/metabolism , Neurons/metabolism , Pantothenate Kinase-Associated Neurodegeneration/metabolism , Adolescent , Brain/diagnostic imaging , Brain/pathology , Calcium/adverse effects , Calpain/metabolism , Child , Child, Preschool , Cohort Studies , Cytoplasm/physiology , Female , Homeostasis , Humans , Induced Pluripotent Stem Cells , Infant , Iron/adverse effects , Magnetic Resonance Imaging , Male , Mass Spectrometry , Microscopy, Electron , Mitochondria/enzymology , Mitochondria/ultrastructure , Neurons/physiology , Neurons/ultrastructure , Pantothenate Kinase-Associated Neurodegeneration/pathology , Phosphotransferases (Alcohol Group Acceptor) , Tomography, X-Ray Computed , Young Adult
5.
Adv Exp Med Biol ; 1173: 153-177, 2019.
Article in English | MEDLINE | ID: mdl-31456210

ABSTRACT

Neurodegeneration with brain iron accumulation (NBIA) is a group of seriously devastating and life-threatening rare monogenic diseases characterized by focal iron accumulation in the brain. The main symptoms of NBIA comprise progressive movement disorder, often including painful dystonia, parkinsonism, mental disability, and early death. Currently, a single established therapy is not available to reverse the progression of these debilitating disorders. The complexity of NBIA emerged from the identification of various causative genes, and up to 15 genes have been identified to date. Although the NBIA genes are involved in different cellular biochemical pathways, they show the common characteristic of generating severe iron accumulation in the basal ganglia of the patients' brains. Thus, the molecular events that lead to brain iron overload and their important roles in the pathophysiology of the diseases are not easy to identify and are poorly understood. This review summarizes the current knowledge on NBIA disorders, with a particular focus on the data describing the role of iron in the pathogenic mechanisms.


Subject(s)
Brain/physiopathology , Iron/metabolism , Basal Ganglia , Brain/metabolism , Humans , Iron Overload , Neurodegenerative Diseases
6.
Biochemistry ; 56(30): 3900-3912, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28636371

ABSTRACT

In animals, the iron storage and detoxification protein, ferritin, is composed of two functionally and genetically distinct subunit types, H (heavy) and L (light), which co-assemble in various ratios with tissue specific distributions to form shell-like protein structures of 24 subunits within which a mineralized iron core is stored. The H-subunit possesses a ferroxidase center (FC) that catalyzes Fe(II) oxidation, whereas the L-subunit does not. To assess the role of the L-subunit in iron oxidation and core formation, two human recombinant heteropolymeric ferritins, designated H-rich and L-rich with ratios of ∼20H:4L and ∼22L:2H, respectively, were employed and compared to the human homopolymeric H-subunit ferritin (HuHF). These heteropolymeric ferritins have a composition similar to the composition of those found in hearts and brains (i.e., H-rich) and in livers and spleens (i.e., L-rich). As for HuHF, iron oxidation in H-rich ferritin was found to proceed with a 2:1 Fe(II):O2 stoichiometry at an iron level of 2 Fe(II) atoms/H-subunit with the generation of H2O2. The H2O2 reacted with additional Fe(II) in a 2:1 Fe(II):H2O2 ratio, thus avoiding the production of hydroxyl radical. A µ-1,2-peroxo-diFe(III) intermediate was observed at the FC of H-rich ferritin as for HuHF. Importantly, the H-rich protein regenerated full ferroxidase activity more rapidly than HuHF did and additionally formed larger iron cores, indicating dual roles for the L-subunit in facilitating iron turnover at the FC and in mineralization of the core. The L-rich ferritin, while also facilitating iron oxidation at the FC, additionally promoted oxidation at the mineral surface once the iron binding capacity of the FC was exceeded.


Subject(s)
Apoferritins/metabolism , Coenzymes/metabolism , Ferritins/metabolism , Heme/metabolism , Iron/metabolism , Apoferritins/chemistry , Apoferritins/genetics , Catalytic Domain , Coenzymes/chemistry , Electrophoresis, Capillary , Ferritins/chemistry , Ferritins/genetics , Heme/chemistry , Holoenzymes/chemistry , Holoenzymes/genetics , Holoenzymes/metabolism , Humans , Hydrogen Peroxide/metabolism , Iron/chemistry , Kinetics , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
7.
Am J Hematol ; 92(4): 338-343, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28052375

ABSTRACT

Although hyperferritinemia may be reflective of elevated total body iron stores, there are conditions in which ferritin levels are disproportionately elevated relative to iron status. Autosomal dominant forms of hyperferritinemia due to mutations in the L-ferritin IRE or in A helix of L-ferritin gene have been described, however cases of isolated hyperferritinemia still remain unsolved. We describe 12 Italian subjects with unexplained isolated hyperferritinemia (UIH). Four probands have affected siblings, but no affected parents or offspring. Sequencing analyses did not identify casual mutations in ferritin gene or IRE regions. These patients had normal levels of intracellular ferritin protein and mRNA in peripheral blood cells excluding pathological ferritin production at transcriptional and post-transcriptional level. In contrast with individuals with benign hyperferritinemia caused by mutations affecting the ferritin A helix, low rather than high glycosylation of serum ferritin was observed in our UIH subjects compared with controls. These findings suggest that subjects with UIH have a previously undescribed form of hyperferritinemia possibly attributable to increased cellular ferritin secretion and/or decreased serum ferritin clearance. The cause remains to be defined and we can only speculate the existence of mutations in gene/s not directly implicated in iron metabolism that could affect ferritin turnover including ferritin secretion.


Subject(s)
Ferritins/blood , Iron Metabolism Disorders/etiology , Adult , Case-Control Studies , Female , Glycosylation , Humans , Iron Overload , Italy , Male , Middle Aged , Pedigree , RNA, Messenger/blood , Siblings , Young Adult
8.
Neurobiol Dis ; 81: 144-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25836419

ABSTRACT

Pantothenate kinase-associated neurodegeneration is an early onset autosomal recessive movement disorder caused by mutation of the pantothenate kinase-2 gene, which encodes a mitochondrial enzyme involved in coenzyme A synthesis. The disorder is characterised by high iron levels in the brain, although the pathological mechanism leading to this accumulation is unknown. To address this question, we tested primary skin fibroblasts from three patients and three healthy subjects, as well as neurons induced by direct fibroblast reprogramming, for oxidative status, mitochondrial functionality and iron parameters. The patients' fibroblasts showed altered oxidative status, reduced antioxidant defence, and impaired cytosolic and mitochondrial aconitase activities compared to control cells. Mitochondrial iron homeostasis and functionality analysis of patient fibroblasts indicated increased labile iron pool content and reactive oxygen species development, altered mitochondrial shape, decreased membrane potential and reduced ATP levels. Furthermore, analysis of induced neurons, performed at a single cell level, confirmed some of the results obtained in fibroblasts, indicating an altered oxidative status and signs of mitochondrial dysfunction, possibly due to iron mishandling. Thus, for the first time, altered biological processes have been identified in vitro in live diseased neurons. Moreover, the obtained induced neurons can be considered a suitable human neuronal model for the identification of candidate therapeutic compounds for this disease.


Subject(s)
Energy Metabolism/physiology , Fibroblasts/ultrastructure , Iron/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/pathology , Neurons/ultrastructure , Aconitate Hydratase/metabolism , Adenosine Triphosphate/metabolism , Adult , Analysis of Variance , Cells, Cultured , Fibroblasts/pathology , Glutathione/metabolism , Humans , Infant, Newborn , Lip/metabolism , Membrane Potential, Mitochondrial/physiology , Mitochondria/pathology , Mitochondria/ultrastructure , Mutation , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/genetics , Neurons/pathology , Oxidation-Reduction , Phosphotransferases (Alcohol Group Acceptor)/genetics , Reactive Oxygen Species/metabolism
9.
Hum Mol Genet ; 21(18): 4049-59, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22692681

ABSTRACT

Pantothenate kinase-associated neurodegeneration (PKAN) is a neurodegenerative disease belonging to the group of neurodegeneration with brain iron accumulation disorders. It is characterized by progressive impairments in movement, speech and cognition. The disease is inherited in a recessive manner due to mutations in the Pantothenate Kinase-2 (PANK2) gene that encodes a mitochondrial protein involved in Coenzyme A synthesis. To investigate the link between a PANK2 gene defect and iron accumulation, we analyzed primary skin fibroblasts from three PKAN patients and three unaffected subjects. The oxidative status of the cells and their ability to respond to iron were analyzed in both basal and iron supplementation conditions. In basal conditions, PKAN fibroblasts show an increase in carbonylated proteins and altered expression of antioxidant enzymes with respect to the controls. After iron supplementation, the PKAN fibroblasts had a defective response to the additional iron. Under these conditions, ferritins were up-regulated and Transferrin Receptor 1 (TfR1) was down-regulated to a minor extent in patients compared with the controls. Analysis of iron regulatory proteins (IRPs) reveals that, with respect to the controls, PKAN fibroblasts have a reduced amount of membrane-associated mRNA-bound IRP1, which responds imperfectly to iron. This accounts for the defective expression of ferritin and TfR1 in patients' cells. The inaccurate quantity of these proteins produced a higher bioactive labile iron pool and consequently increased iron-dependent reactive oxygen species formation. Our results suggest that Pank2 deficiency promotes an increased oxidative status that is further enhanced by the addition of iron, potentially causing damage in cells.


Subject(s)
Fibroblasts/metabolism , Iron/metabolism , Pantothenate Kinase-Associated Neurodegeneration/pathology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Skin/pathology , Case-Control Studies , Catalase/metabolism , Cells, Cultured , Ferritins/metabolism , Fibroblasts/enzymology , Humans , Iron-Regulatory Proteins/metabolism , Mutation, Missense , Oxidation-Reduction , Oxidative Stress , Pantothenate Kinase-Associated Neurodegeneration/metabolism , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Protein Binding , Protein Carbonylation , Superoxide Dismutase/metabolism , Superoxide Dismutase-1
10.
Hepatology ; 58(6): 2122-32, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23744538

ABSTRACT

UNLABELLED: The liver-derived peptide hepcidin controls the balance between iron demand and iron supply. By inhibiting the iron export activity of ferroportin, hepcidin modulates iron absorption and delivery from the body's stores. The regulation of hepcidin, however, is not completely understood and includes a variety of different signals. We studied iron metabolism and hepcidin expression in mice constitutively overexpressing erythropoietin (Epo) (Tg6 mice), which leads to excessive erythropoiesis. We observed a very strong down-regulation of hepcidin in Tg6 mice that was accompanied by a strong increase in duodenal expression of ferroportin and divalent metal tranporter-1, as well as enhanced duodenal iron absorption. Despite these compensatory mechanisms, Tg6 mice displayed marked circulating iron deficiency and low levels of iron in liver, spleen, and muscle. To elucidate the primary signal affecting hepcidin expression during chronically elevated erythropoiesis, we increased iron availability by either providing iron (thus further increasing the hematocrit) or reducing erythropoiesis-dependent iron consumption by means of splenectomy. Both treatments increased liver iron and up-regulated hepcidin expression and the BMP6/SMAD pathway despite continuously high plasma Epo levels and sustained erythropoiesis. This suggests that hepcidin expression is not controlled by erythropoietic signals directly in this setting. Rather, these results indicate that iron consumption for erythropoiesis modulates liver iron content, and ultimately BMP6 and hepcidin. Analysis of the BMP6/SMAD pathway targets showed that inhibitor of DNA binding 1 (ID1) and SMAD7, but not transmembrane serine protease 6 (TMPRSS6), were up-regulated by increased iron availability and thus may be involved in setting the upper limit of hepcidin. CONCLUSION: We provide evidence that under conditions of excessive and effective erythropoiesis, liver iron regulates hepcidin expression through the BMP6/SMAD pathway.


Subject(s)
Erythropoiesis/drug effects , Hepcidins/biosynthesis , Iron/metabolism , Animals , Bone Morphogenetic Protein 6/physiology , Cation Transport Proteins/biosynthesis , Down-Regulation , Duodenum/physiology , Intestinal Absorption , Male , Mice , Mice, Transgenic , Smad7 Protein/biosynthesis , Spleen/physiology , Up-Regulation
11.
Hum Reprod ; 29(3): 577-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24430779

ABSTRACT

STUDY QUESTION: Does the iron content of an endometrioma represent a potential source of toxicity for the adjacent follicles? SUMMARY ANSWER: The presence of an endometrioma increases iron and H/L ferritin levels, and transferrin receptor (TfR1) mRNA in individual follicles proximal to the endometrioma and is accompanied by reduced oocyte retrieval. WHAT IS KNOWN ALREADY: Levels of free iron in endometriotic ovarian cysts are much higher than those in normal serum or in non-endometriotic ovarian cysts. The presence of an endometrioma exerts a detrimental effect on the surrounding healthy ovarian tissue as reflected by a reduced number of developing follicles and oocytes retrieved in IVF cycles. STUDY DESIGN, SIZE, DURATION: This is a research study with prospective collection and evaluation of individual follicles (follicular fluid and luteinized granulosa cells) from the affected and the healthy ovaries of 13 women with unilateral endometrioma. PARTICIPANTS/MATERIALS, SETTING, METHODS: Individual follicular samples (145) were obtained from 13 women with endometriosis-related infertility undergoing IVF-ICSI procedures from May 2012 to March 2013. All women had unilateral endometrioma not previously treated with surgery; the contralateral ovary was free of endometriomas and previous surgery. The average ± SEM age was 35.36 ± 2.5 years with anti-Mullerian hormone levels of 2.03 ± 0.55 ng/ml. Follicles were classified as: (i) proximal follicles, in physical contact with the endometrioma; (ii) distal follicles, present in the affected ovary but not in close contact with the endometrioma and (iii) contralateral follicles, in the contralateral healthy ovary. Iron content was measured by the FerroZine method. H/L ferritin subunits were evaluated by specific enzyme-linked immunosorbant assays. Expression of H ferritin and TfR1 was examined by semi-quantitative RT-PCR. Oocyte retrieval rates and Day 3 embryo quality were analyzed. MAIN RESULTS AND THE ROLE OF CHANCE: Total iron levels were higher in endometrioma-proximal follicles compared with endometrioma-distal ones (P = 0.009) and to follicles in the healthy ovary (P = 0.02). L ferritin was higher in proximal versus distal follicles (P = 0.044) or follicles from the healthy ovary (P = 0.027). H ferritin was higher in the proximal and distal follicles compared with follicles in the healthy ovary (P = 0.042 and P = 0.0067, respectively). H ferritin transcript levels in granulosa cells were higher in proximal follicles versus follicles from healthy ovary (P = 0.02). TfR1 transcript levels were higher in proximal versus distal follicles (P = 0.03) and versus follicles from the healthy ovary (P = 0.04). The oocyte retrieval rate was lower in proximal and distal follicles than in follicles from the healthy ovary (P = 0.001 and P = 0.04, respectively). LIMITATIONS, REASONS FOR CAUTION: This is a study on a relatively small sample size and confirmation in a larger group of patients may be required. The method used to purify luteinized granulosa cells offers the best combination of purity, viability and total number of cells recovered. However, a minor contamination by CD45(+) cells (<5%) cannot be excluded. WIDER IMPLICATIONS OF THE FINDINGS: This study represents a further in-depth analysis of the toxic influence of the endometrioma content on the surrounding follicles. We demonstrate the presence of iron-related compounds that are potentially toxic to developing ovarian follicles adjacent to the endometrioma during IVF. Our findings provide novel information that suggests that when surgical removal of the endometrioma is not the option, follicle aspiration at sites distant from the endometrioma might increase the probability of retrieving oocytes. STUDY FUNDING/COMPETING INTEREST(S): This project was supported by Fondazione Giorgio Pardi, Milan, Italy. The authors have no competing financial interests in relation to the content of this research paper. TRIAL REGISTRATION NUMBER: NA.


Subject(s)
Iron/metabolism , Ovarian Follicle/metabolism , Antigens, CD/biosynthesis , Endometriosis/surgery , Female , Ferritins/biosynthesis , Granulosa Cells/metabolism , Humans , Oocyte Retrieval , Ovarian Follicle/drug effects , Receptors, Transferrin/biosynthesis
12.
Cell Death Dis ; 15(5): 361, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796462

ABSTRACT

Disease models of neurodegeneration with brain iron accumulation (NBIA) offer the possibility to explore the relationship between iron dyshomeostasis and neurodegeneration. We analyzed hiPS-derived astrocytes from PANK2-associated neurodegeneration (PKAN), an NBIA disease characterized by progressive neurodegeneration and high iron accumulation in the globus pallidus. Previous data indicated that PKAN astrocytes exhibit alterations in iron metabolism, general impairment of constitutive endosomal trafficking, mitochondrial dysfunction and acquired neurotoxic features. Here, we performed a more in-depth analysis of the interactions between endocytic vesicles and mitochondria via superresolution microscopy experiments. A significantly lower number of transferrin-enriched vesicles were in contact with mitochondria in PKAN cells than in control cells, confirming the impaired intracellular fate of cargo endosomes. The investigation of cytosolic and mitochondrial iron parameters indicated that mitochondrial iron availability was substantially lower in PKAN cells compared to that in the controls. In addition, PKAN astrocytes exhibited defects in tubulin acetylation/phosphorylation, which might be responsible for unregulated vesicular dynamics and inappropriate iron delivery to mitochondria. Thus, the impairment of iron incorporation into these organelles seems to be the cause of cell iron delocalization, resulting in cytosolic iron overload and mitochondrial iron deficiency, triggering mitochondrial dysfunction. Overall, the data elucidate the mechanism of iron accumulation in CoA deficiency, highlighting the importance of mitochondrial iron deficiency in the pathogenesis of disease.


Subject(s)
Astrocytes , Cytosol , Iron Overload , Iron , Mitochondria , Astrocytes/metabolism , Astrocytes/pathology , Humans , Mitochondria/metabolism , Cytosol/metabolism , Iron/metabolism , Iron Overload/metabolism , Iron Overload/pathology , Tubulin/metabolism , Phosphorylation , Iron Deficiencies , Acetylation
13.
Br J Haematol ; 161(5): 726-737, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23573868

ABSTRACT

In myelodysplastic syndromes with ring sideroblasts (MDS-RS), the iron deposited in the mitochondria of RS is present in the form of mitochondrial ferritin (FTMT), but it is unknown whether FTMT overexpression is the cause or the result of mitochondrial iron deposition. Lentivirus FTMT-transduced CD34(+) bone marrow cells from seven healthy donors and CD34(+) cells from 24 patients with MDS-RS were cultured according to a procedure that allowed the expansion of high numbers of erythroid progenitors. These cells were used to investigate the possible influence of experimentally-induced FTMT overexpression on normal erythropoiesis and the functional effects of FTMT in sideroblastic erythropoiesis. In MDS-RS progenitors, FTMT overexpression was associated with reduced cytosolic ferritin levels, increased surface transferrin receptor expression and reduced cell proliferation; FTMT effects were independent of SF3B1 mutation status. Similarly, FTMT overexpressing normal erythroid progenitors were characterized by reduced cytosolic ferritin content and increased CD71 expression, and also by higher apoptotic rate in comparison with the FTMT- controls. Significantly lower levels of STAT5 phosphorylation following erythropoietin stimulation were found in both sideroblastic and normal FTMT(+) erythroid cells compared to the FTMT- cells. In conclusion, experimental overexpression of FTMT may modify mitochondrial iron availability and lead to ineffective erythropoiesis.


Subject(s)
Anemia, Sideroblastic/metabolism , Erythroid Precursor Cells/metabolism , Ferritins/metabolism , Mitochondrial Proteins/metabolism , Anemia, Sideroblastic/pathology , Antigens, CD34/metabolism , Apoptosis/physiology , Bone Marrow Cells/metabolism , Cells, Cultured , Erythropoiesis/physiology , Female , Ferritins/genetics , Genetic Vectors/genetics , Humans , Lentivirus/genetics , Male , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Transduction, Genetic
14.
Haematologica ; 98(6): 971-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23242599

ABSTRACT

Multiple myeloma is a malignant still incurable plasma cell disorder. Pharmacological treatment based on proteasome inhibition has improved patient outcome; however, bortezomib-resistance remains a major clinical problem. Inhibition of proteasome functionality affects cellular iron homeostasis and iron is a potent inducer of reactive oxygen species and cell death, unless safely stored in ferritin. We explored the potential role of iron in bortezomib-resistance. We analyzed iron proteins, oxidative status and cell viability in 7 multiple myeloma cell lines and in plasma cells from 5 patients. Cells were treated with increasing bortezomib concentrations with or without iron supplementation. We reduced ferritin levels by both shRNA technology and by drug-induced iron starvation. Multiple myeloma cell lines are characterized by distinct ferritin levels, which directly correlate with bortezomib resistance. We observed that iron supplementation upon bortezomib promotes protein oxidation and cell death, and that iron toxicity inversely correlates with basal ferritin levels. Bortezomib prevents ferritin upregulation in response to iron, thus limiting the ability to buffer reactive oxygen species. Consequently, reduction of basal ferritin levels increases both bortezomib sensitivity and iron toxicity. In patients' cells, we confirmed that bortezomib prevents ferritin increase, that iron supplementation upon bortezomib increases cell death and that ferritin reduction overcomes bortezomib resistance. Bortezomib affects iron homeostasis, sensitizing cells to oxidative damage. Modulation of iron status is a strategy worth exploring to improve the efficacy of proteasome inhibition therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Boronic Acids/pharmacology , Drug Resistance, Neoplasm , Iron/metabolism , Multiple Myeloma/metabolism , Pyrazines/pharmacology , Bortezomib , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Ferritins/blood , Humans , Inhibitory Concentration 50 , Iron/toxicity , Multiple Myeloma/drug therapy , Plasma Cells/drug effects , Plasma Cells/metabolism
15.
Eur J Haematol ; 91(1): 74-84, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23582009

ABSTRACT

Inhibition of hepcidin expression by erythropoietic signals is of great physiological importance; however, the inhibitory pathways remain poorly understood. To investigate (i) the direct effect of erythropoietin (Epo) and (ii) the contribution of putative mediators on hepcidin repression, healthy volunteers were injected with a single dose of Epo, either low (63 IU/kg, n = 8) or high (400 IU/kg, n = 6). Low-dose Epo provoked hepcidin down-modulation within 24 h; the effect was not immediate as hepcidin circadian variations were still present following injection. High-dose Epo induced no additional effect on the hepcidin response, that is hepcidin diurnal fluctuations were not abolished in spite of extremely high Epo levels. We did not find significant changes in putative mediators of hepcidin repression, such as transferrin saturation, soluble transferrin receptor, or growth differentiation factor 15. Furthermore, the potential hepcidin inhibitor, soluble hemojuvelin, was found unaltered by Epo stimulation. This finding was consistent with the absence of signs of iron deficiency observed at the level of skeletal muscle tissue. Our data suggest that hepcidin repression by erythropoietic signals in humans may not be controlled directly by Epo, but mediated by a still undefined factor.


Subject(s)
Erythropoietin/pharmacology , GPI-Linked Proteins/metabolism , Hepcidins/blood , Iron/blood , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Adult , Biopsy , C-Reactive Protein/metabolism , Cross-Over Studies , Epoetin Alfa , Growth Differentiation Factor 15/metabolism , Hemochromatosis Protein , Humans , Iron/administration & dosage , Iron/metabolism , Male , Receptors, Transferrin/metabolism , Recombinant Proteins/pharmacology , Single-Blind Method , Time Factors , Transferrin/metabolism , Young Adult
16.
Biol Cell ; 104(9): 533-52, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22554054

ABSTRACT

BACKGROUND INFORMATION: PIX proteins are exchange factors for Rac and Cdc42 GTPases that are differentially expressed in the brain, where they are implicated in neuronal morphogenesis. The PIX family includes the two members αPIX and ßPIX, and the gene of αPIX is mutated in patients with intellectual disability. RESULTS: We have analysed the expression of PIX proteins in the developing brain and addressed their role during early hippocampal neuron development. Mass spectrometry identified several ßPIX isoforms and a major p75 αPIX isoform in brain and hippocampal cultures. PIX proteins expression increased with time during neuronal differentiation in vitro. The PIX partners GIT1 and GIT2 are also found in brain and their expression was increased during neuronal differentiation. We found that αPIX, but not ßPIX, was required for proper hippocampal neuron differentiation, since silencing of αPIX specifically hampered dendritogenesis and axonal branching. Interestingly, the depletion of GIT2 but not GIT1 mimicked the phenotype observed after αPIX knock-down. Over-expression of αPIX specifically enhanced dendritic branching, while both αPIX and ßPIX over-expression affected axonal morphology. Again, only over-expression of GIT2, but not GIT1, affected neuritic morphology. CONCLUSIONS: The results indicate that αPIX and GIT2 are required for neuronal differentiation, and suggest that they are part of the same pathway, while GIT1 and ßPIX are dispensable for early hippocampal neurons development.


Subject(s)
Axons/metabolism , Dendrites/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Hippocampus/cytology , Animals , Cell Differentiation , Cells, Cultured , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Hippocampus/metabolism , Mice , Neurons/cytology , Neurons/metabolism , Rats , Rho Guanine Nucleotide Exchange Factors
17.
Pharmaceutics ; 15(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36678831

ABSTRACT

The novel brain-penetrant peroxisome proliferator-activated receptor gamma agonist leriglitazone, previously validated for other rare neurodegenerative diseases, is a small molecule that acts as a regulator of mitochondrial function and exerts neuroprotective, anti-oxidative and anti-inflammatory effects. Herein, we tested whether leriglitazone can be effective in ameliorating the mitochondrial defects that characterize an hiPS-derived model of Pantothenate kinase-2 associated Neurodegeneration (PKAN). PKAN is caused by a genetic alteration in the mitochondrial enzyme pantothenate kinase-2, whose function is to catalyze the first reaction of the CoA biosynthetic pathway, and for which no effective cure is available. The PKAN hiPS-derived astrocytes are characterized by mitochondrial dysfunction, cytosolic iron deposition, oxidative stress and neurotoxicity. We monitored the effect of leriglitazone in comparison with CoA on hiPS-derived astrocytes from three healthy subjects and three PKAN patients. The treatment with leriglitazone did not affect the differentiation of the neuronal precursor cells into astrocytes, and it improved the viability of PKAN cells and their respiratory activity, while diminishing the iron accumulation similarly or even better than CoA. The data suggest that leriglitazone is well tolerated in this cellular model and could be considered a beneficial therapeutic approach in the treatment of PKAN.

18.
Clin Chem Lab Med ; 50(6): 1021-9, 2012 Jan 09.
Article in English | MEDLINE | ID: mdl-22706241

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD) is a multifactorial disease for which an involvement of alterations in the retinal ABC transporter gene (ABCA4) is still debated. Oxidative stress in retinal pigment epithelial cells has been postulated to contribute to the pathogenesis of the disease. Mitochondrial ferritin (FtMt), an iron-sequestering protein, is expressed in cell types characterized by high metabolic activity and oxygen consumption, including human retina, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. Based on these findings we wanted to investigate whether mutations in this gene could be found in AMD patients. METHODS: Mutational scanning of the FTMTgene was performed in a cohort of 50 patients affected by age-related macular degeneration. The ABCA4 gene was also scanned in one patient carrying an FtMt mutation. In silico analyses were carried out on the identified variants. The recombinant form of FtMt variant was expressed in Escherichia coli and biochemically characterized. RESULTS: One patient was found to be heterozygous for two previously unreported genetic changes: a complex FtMt mutation (c.437_450delinsCT: delAGGACATCAAGAAGinsCT) and a missense p.Leu973Phe (c.2919G>T) mutation in exon 20 of ABCA4. Computational analyses predicted a severe structural impairment for FtMt variant and a mild destabilizing effect for ABCA4. E. coli expression of recombinant FtMt variant yielded a highly insoluble protein that could not be renatured under in vitro conditions suitable for wild-type ferritins. CONCLUSIONS: Our findings suggest that the FtMt mutation may determine a condition similar to haploinsufficiency resulting in a reduced protection from iron-dependent oxidative stress in mitochondria.


Subject(s)
ATP-Binding Cassette Transporters/genetics , DNA Mutational Analysis , Ferritins/genetics , Macular Degeneration/genetics , Mitochondrial Proteins/genetics , Mutation , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Aged, 80 and over , Base Sequence , Cohort Studies , Female , Ferritins/chemistry , Ferritins/metabolism , Humans , Macular Degeneration/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary
19.
Front Cell Neurosci ; 16: 878103, 2022.
Article in English | MEDLINE | ID: mdl-35783094

ABSTRACT

PKAN disease is caused by mutations in the PANK2 gene, encoding the mitochondrial enzyme pantothenate kinase 2, catalyzing the first and key reaction in Coenzyme A (CoA) biosynthetic process. This disorder is characterized by progressive neurodegeneration and excessive iron deposition in the brain. The pathogenic mechanisms of PKAN are still unclear, and the available therapies are only symptomatic. Although iron accumulation is a hallmark of PKAN, its relationship with CoA dysfunction is not clear. We have previously developed hiPS-derived astrocytes from PKAN patients showing iron overload, thus recapitulating the human phenotype. In this work, we demonstrated that PKAN astrocytes presented an increase in transferrin uptake, a key route for cellular iron intake via transferrin receptor-mediated endocytosis of transferrin-bound iron. Investigation of constitutive exo-endocytosis and vesicular dynamics, exploiting the activity-enriching biosensor SynaptoZip, led to the finding of a general impairment in the constitutive endosomal trafficking in PKAN astrocytes. CoA and 4-phenylbutyric acid treatments were found to be effective in partially rescuing the aberrant vesicular behavior and iron intake. Our results demonstrate that the impairment of CoA biosynthesis could interfere with pivotal intracellular mechanisms involved in membrane fusions and vesicular trafficking, leading to an aberrant transferrin receptor-mediated iron uptake.

20.
Cell Death Dis ; 13(2): 185, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217637

ABSTRACT

Neurodegeneration associated with defective pantothenate kinase-2 (PKAN) is an early-onset monogenic autosomal-recessive disorder. The hallmark of the disease is the massive accumulation of iron in the globus pallidus brain region of patients. PKAN is caused by mutations in the PANK2 gene encoding the mitochondrial enzyme pantothenate kinase-2, whose function is to catalyze the first reaction of the CoA biosynthetic pathway. To date, the way in which this alteration leads to brain iron accumulation has not been elucidated. Starting from previously obtained hiPS clones, we set up a differentiation protocol able to generate inhibitory neurons. We obtained striatal-like medium spiny neurons composed of approximately 70-80% GABAergic neurons and 10-20% glial cells. Within this mixed population, we detected iron deposition in both PKAN cell types, however, the viability of PKAN GABAergic neurons was strongly affected. CoA treatment was able to reduce cell death and, notably, iron overload. Further differentiation of hiPS clones in a pure population of astrocytes showed particularly evident iron accumulation, with approximately 50% of cells positive for Perls staining. The analysis of these PKAN astrocytes indicated alterations in iron metabolism, mitochondrial morphology, respiratory activity, and oxidative status. Moreover, PKAN astrocytes showed signs of ferroptosis and were prone to developing a stellate phenotype, thus gaining neurotoxic features. This characteristic was confirmed in iPS-derived astrocyte and glutamatergic neuron cocultures, in which PKAN glutamatergic neurons were less viable in the presence of PKAN astrocytes. This newly generated astrocyte model is the first in vitro disease model recapitulating the human phenotype and can be exploited to deeply clarify the pathogenetic mechanisms underlying the disease.


Subject(s)
Astrocytes , Pantothenate Kinase-Associated Neurodegeneration , Astrocytes/metabolism , Coenzyme A/genetics , Coenzyme A/metabolism , Humans , Iron/metabolism , Neurons/metabolism , Pantothenate Kinase-Associated Neurodegeneration/genetics , Pantothenate Kinase-Associated Neurodegeneration/metabolism , Pantothenate Kinase-Associated Neurodegeneration/pathology , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL