Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Phycol ; 54(6): 767-771, 2018 12.
Article in English | MEDLINE | ID: mdl-30206942

ABSTRACT

Genetic diversity is considered a key factor of population survival and evolution, especially in changing environments. Genetic diversity arises from mutations in the DNA sequence of cell lines and from there it reaches the level of organisms, populations, and regions. However, many previous studies have not considered the organism architecture or pattern of thallus construction, ignoring the potential genetic complexities that intraorganismal genetic heterogeneity could generate in modular organisms. In seaweeds, modularity and clonality exist in many species. Modular organization has been related to advantages in terms of rapid construction and recovery after the loss of individual modules, which have their own demographic properties as they generate, mature, senesce, and die. Based on recent evidence from the literature, we suggest that modules also have their own genetic properties. Specifically, modular seaweeds have two possible sources of genetic diversity at the individual level: the heterozygosity of the genotypes composing the genet, and genetic heterogeneity among the modules within a genet (i.e., intraclonal genetic variability). Both sources of genetic diversity can have ecological and evolutionary consequences, and most of them must be considered in research on modular seaweeds. Linking intraorganismal genetic diversity with clonal architecture and propagation styles may help us to understand important ecological and evolutionary processes such as speciation modes, invasive capacities, or farming potential.


Subject(s)
Genetic Heterogeneity , Seaweed/genetics
2.
J Phycol ; 53(1): 59-69, 2017 02.
Article in English | MEDLINE | ID: mdl-27716922

ABSTRACT

Chimerism is produced by the somatic fusion of two or more genetically distinct conspecific individuals. In animals, the main cost of fusion is competition between genetically different cell lineages and the probability of original cell line replacement by more competitive invasive lines, which limits its natural frequency (3%-5%). In red and brown seaweeds, chimerism is widespread (27%-53%), seemingly without the negative outcomes described for animals. The rigidity of cell walls in macroalgae prevents cell motility and invasions. In addition, in moving waters, most somatic fusions involve the holdfast. Histological observations in laboratory-built bicolor macroalgal chimeras indicated that upright axes emerge from the base of plants by proliferation and vertical growth of discrete cell groups that include one or just a few of the cell lineages occurring in the holdfasts. Laboratory experiments showed growth competition between cell lineages, thus explaining lineage segregation during growth along originally chimeric erect axes. Genotyping of the axes showed more heterogeneous tissues basally, but apically more homogeneous ones, generating a vertical gradient of allele abundance and diversity. The few chimeric primary branches produced, eventually became homogenous after repeated branching. Therefore, coalescing macroagae exhibit a unique pattern of post-fusion growth, with the capacity to reverse chimerism. This pattern is significantly different from those in animals and land plants, suggesting chimerism is a biologically heterogeneous concept.


Subject(s)
Chimerism , Rhodophyta/growth & development , Rhodophyta/genetics , Cell Lineage , Gene Frequency , Seaweed/genetics , Seaweed/growth & development
3.
J Phycol ; 51(2): 247-54, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26986520

ABSTRACT

Adenosine 5'-triphosphate (ATP) is a versatile extracellular signal along the tree of life, whereas cAMP plays a major role in vertebrates as an intracellular messenger for hormones, transmitters, tastants, and odorants. Since red algal spore coalescence may be considered analogous to the congregation process of social amoeba, which is stimulated by cAMP, we ascertained whether exogenous applications of ATP, cAMP, adenine, or adenosine modified spore survival and motility, spore settlement and coalescence. Concentration-response studies were performed with carpospores of Mazzaella laminarioides (Gigartinales), incubated with and without added purines. Stirring of algal blades released ADP/ATP to the cell media in a time-dependent manner. 10-300 µM ATP significantly increased spore survival; however, 1,500 µM ATP, cAMP or adenine induced 100% mortality within less than 24 h; the exception was adenosine, which up to 3,000 µM, did not alter spore survival. ATP exposure elicited spore movement with speeds of 2.2-2.5 µm · s(-1) . 14 d after 1,000 µM ATP addition, spore abundance in the central zone of the plaques was increased 2.7-fold as compared with parallel controls. Likewise, 1-10 µM cAMP or 30-100 µM adenine also increased central zone spore abundance, albeit these purines were less efficacious than ATP; adenosine up to 3,000 µM did not influence settlement. Moreover, 1,000 µM ATP markedly accelerated coalescence, the other purines caused a variable effect. We conclude that exogenous cAMP, adenine, but particularly ATP, markedly influence red algal spore physiology; effects are compatible with the expression of one or more membrane purinoceptor(s), discarding adenosine receptor participation.

4.
Ecol Evol ; 8(11): 5741-5751, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29938089

ABSTRACT

Heterozygosity has been positively associated with fitness and population survival. However, the relationship between heterozygosity and adaptive phenotypic plasticity (i.e., plasticity which results in fitness homeostasis or improvement in changing environments) is unclear and has been poorly explored in seaweeds. In this study, we explored this relationship in the clonal red seaweed, Gracilaria chilensis by conducting three growth rate plasticity experiments under contrasting salinity conditions and by measuring heterozygosity with five microsatellite DNA markers. Firstly, we compared growth rate plasticity between the haploid and diploid phases. Secondly, we compared growth rate plasticity between diploids with different numbers of heterozygous loci. Finally, we compared growth rate plasticity between diploid plants from two populations that are expected to exhibit significant differences in heterozygosity. We found that, (i) diploids displayed a higher growth rate and lower growth rate plasticity than haploids, (ii) diploids with a higher number of heterozygous loci displayed lower growth rate plasticity than those exhibiting less heterozygosity, and (iii) diploid sporophytes from the population with higher heterozygosity displayed lower growth rate plasticity than those with lower heterozygosity. Accordingly, this study suggests that heterozygosity is inversely related to growth rate plasticity in G. chilensis. However, better genetic tools in seaweeds are required for a more definitive conclusion on the relationship between heterozygosity and phenotypic plasticity.

5.
PLoS One ; 12(2): e0169182, 2017.
Article in English | MEDLINE | ID: mdl-28234957

ABSTRACT

Chimerism occurs when two genetically distinct conspecific individuals fuse together generating a single entity. Coalescence and chimerism in red seaweeds has been positively related to an increase in body size, and the consequent reduction in susceptibility to mortality factors, thus increasing survival, reproductive potential and tolerance to stress in contrast to genetically homogeneous organisms. In addition, they showed that a particular pattern of post-fusion growth maintains higher genetic diversity and chimerism in the holdfast but homogenous axes. In Chilean kelps (brown seaweeds), intraorganismal genetic heterogeneity (IGH) and holdfast coalescence has been described in previous research, but the extent of chimerism in wild populations and the patterns of distribution of the genetically heterogeneous thallus zone have scarcely been studied. Since kelps are under continuous harvesting, with enormous social, ecological and economic importance, natural chimerism can be considered a priceless in-situ reservoir of natural genetic resources and variability. In this study, we therefore examined the frequency of IGH and chimerism in three harvested populations of Lessonia spicata. We then evaluated whether chimeric wild-type holdfasts show higher genetic diversity than erect axes (stipe and lamina) and explored the impact of this on the traditional estimation of genetic diversity at the population level. We found a high frequency of IGH (60-100%) and chimerism (33.3-86.7%), varying according to the studied population. We evidenced that chimerism occurs mostly in holdfasts, exhibiting heterogeneous tissues, whereas stipes and lamina were more homogeneous, generating a vertical gradient of allele and genotype abundance as well as divergence, constituting the first time "within- plant" genetic patterns have been reported in kelps. This is very different from the chimeric patterns described in land plants and animals. Finally, we evidenced that IGH affected genetic differentiation among populations, showed lower levels of FST index when we compared holdfast than lamina samples. In the light of this, future studies should evaluate the significance of chimeric holdfasts in their ability to increase kelps resilience, improve restoration and ecosystem service.


Subject(s)
Chimerism , Genetic Heterogeneity , Genetics, Population , Phaeophyceae/genetics , Alleles , Chile , Ecosystem , Genetic Variation , Genotype
7.
J Phycol ; 48(5): 1153-65, 2012 Oct.
Article in English | MEDLINE | ID: mdl-27011275

ABSTRACT

The kelp Lessonia nigrescens Bory is the most ecologically and economically important seaweed in rocky intertidal and shallow subtidal habitats along the temperate Pacific South American coasts. Recent molecular studies suggest the existence of two lineages, one (northern lineage) from 17° S to 30° S and a second (central lineage) from 29° S to 41° S. To identify and name these lineages we performed morphological, nomenclatural and field studies. Four external and three internal anatomical traits permitted a morphological separation of the two lineages. The internal structure of both lineages was different from the isolectotype of Lessonia nigrescens. It is therefore concluded that the name Lessonia nigrescens should not be used for the Chilean material. Chordaria spicata Suhr appears as the oldest available name for the central lineage, while Lessonia berteroana Montagne is the oldest name for the northern lineage. In both cases, the type material consisted of small-sized, apical branches of larger plants. The new combination Lessonia spicata (Suhr) Santelices is proposed for the central lineage and we reinstate Lessonia berteroana for the northern lineage. Laminaria scissa Suhr is reduced to synonym of L. spicata. Representative specimens of Lessonia nigrescens were not found during new visits to its type locality in Cape Horn and along Chile. Future studies should verify the status of this species.

8.
Santiago de Chile; Ediciones Universidad Católica de Chile; 1997. 434 p. ilus, tab, graf.
Monography in Spanish | LILACS | ID: lil-301919
SELECTION OF CITATIONS
SEARCH DETAIL