ABSTRACT
Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as ß-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Glycoside Hydrolases/metabolism , Glucosinolates/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , InsectaABSTRACT
Secreted signaling peptides are central regulators of growth, development, and stress responses, but specific steps in the evolution of these peptides and their receptors are not well understood. Also, the molecular mechanisms of peptide-receptor binding are only known for a few examples, primarily owing to the limited availability of protein structural determination capabilities to few laboratories worldwide. Plants have evolved a multitude of secreted signaling peptides and corresponding transmembrane receptors. Stress-responsive SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs) were recently identified. Bioactive SCOOPs are proteolytically processed by subtilases and are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) in the model plant Arabidopsis thaliana. How SCOOPs and MIK2 have (co)evolved, and how SCOOPs bind to MIK2 are unknown. Using in silico analysis of 350 plant genomes and subsequent functional testing, we revealed the conservation of MIK2 as SCOOP receptor within the plant order Brassicales. We then leveraged AI-based structural modeling and comparative genomics to identify two conserved putative SCOOP-MIK2 binding pockets across Brassicales MIK2 homologues predicted to interact with the "SxS" motif of otherwise sequence-divergent SCOOPs. Mutagenesis of both predicted binding pockets compromised SCOOP binding to MIK2, SCOOP-induced complex formation between MIK2 and its coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1, and SCOOP-induced reactive oxygen species production, thus, confirming our in silico predictions. Collectively, in addition to revealing the elusive SCOOP-MIK2 binding mechanism, our analytic pipeline combining phylogenomics, AI-based structural predictions, and experimental biochemical and physiological validation provides a blueprint for the elucidation of peptide ligand-receptor perception mechanisms.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Ligands , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Peptides/metabolism , Peptides/chemistry , Evolution, Molecular , Models, Molecular , Signal Transduction , PhosphotransferasesABSTRACT
The plant immune system perceives a diversity of carbohydrate ligands from plant and microbial cell walls through the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs), which activate pattern-triggered immunity (PTI). Among these ligands are oligosaccharides derived from mixed-linked ß-1,3/ß-1,4-glucans (MLGs; e.g. ß-1,4-D-(Glc)2 -ß-1,3-D-Glc, MLG43) and cellulose (e.g. ß-1,4-D-(Glc)3 , CEL3). The mechanisms behind carbohydrate perception in plants are poorly characterized except for fungal chitin oligosaccharides (e.g. ß-1,4-d-(GlcNAc)6 , CHI6), which involve several receptor kinase proteins (RKs) with LysM-ECDs. Here, we describe the isolation and characterization of Arabidopsis thaliana mutants impaired in glycan perception (igp) that are defective in PTI activation mediated by MLG43 and CEL3, but not by CHI6. igp1-igp4 are altered in three RKs - AT1G56145 (IGP1), AT1G56130 (IGP2/IGP3) and AT1G56140 (IGP4) - with leucine-rich-repeat (LRR) and malectin (MAL) domains in their ECDs. igp1 harbors point mutation E906K and igp2 and igp3 harbor point mutation G773E in their kinase domains, whereas igp4 is a T-DNA insertional loss-of-function mutant. Notably, isothermal titration calorimetry (ITC) assays with purified ECD-RKs of IGP1 and IGP3 showed that IGP1 binds with high affinity to CEL3 (with dissociation constant KD = 1.19 ± 0.03 µm) and cellopentaose (KD = 1.40 ± 0.01 µM), but not to MLG43, supporting its function as a plant PRR for cellulose-derived oligosaccharides. Our data suggest that these LRR-MAL RKs are components of a recognition mechanism for both cellulose- and MLG-derived oligosaccharide perception and downstream PTI activation in Arabidopsis.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Leucine/metabolism , Glucans/metabolism , Cellulose/metabolism , Plant Immunity/genetics , Plants/metabolism , Oligosaccharides/metabolismABSTRACT
Plant reproduction relies on the highly regulated growth of the pollen tube for sperm delivery. This process is controlled by secreted RALF signaling peptides, which have previously been shown to be perceived by Catharanthus roseus RLK1-like (CrRLK1Ls) membrane receptor-kinases/LORELEI-like GLYCOLPHOSPHATIDYLINOSITOL (GPI)-ANCHORED PROTEINS (LLG) complexes, or by leucine-rich repeat (LRR) extensin proteins (LRXs). Here, we demonstrate that RALF peptides fold into bioactive, disulfide bond-stabilized proteins that bind the LRR domain of LRX proteins with low nanomolar affinity. Crystal structures of LRX2-RALF4 and LRX8-RALF4 complexes at 3.2- and 3.9-Å resolution, respectively, reveal a dimeric arrangement of LRX proteins, with each monomer binding one folded RALF peptide. Structure-based mutations targeting the LRX-RALF4 complex interface, or the RALF4 fold, reduce RALF4 binding to LRX8 in vitro and RALF4 function in growing pollen tubes. Mutants targeting the disulfide-bond stabilized LRX dimer interface fail to rescue lrx infertility phenotypes. Quantitative biochemical assays reveal that RALF4 binds LLGs and LRX cell-wall modules with drastically different binding affinities, and with distinct and mutually exclusive binding modes. Our biochemical, structural, and genetic analyses reveal a complex signaling network by which RALF ligands instruct different signaling proteins using distinct targeting mechanisms.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Carrier Proteins/metabolism , Pollen Tube/growth & development , Arabidopsis/metabolism , Cell Wall/metabolism , Genes, Plant , Leucine-Rich Repeat Proteins , Ligands , Membrane Glycoproteins/metabolism , Mutation , Peptides/metabolism , Phenotype , Phosphotransferases/metabolism , Pollen Tube/metabolism , Pollination , Proteins/metabolismABSTRACT
Microbial and plant cell walls have been selected by the plant immune system as a source of microbe- and plant damage-associated molecular patterns (MAMPs/DAMPs) that are perceived by extracellular ectodomains (ECDs) of plant pattern recognition receptors (PRRs) triggering immune responses. From the vast number of ligands that PRRs can bind, those composed of carbohydrate moieties are poorly studied, and only a handful of PRR/glycan pairs have been determined. Here we present a computational screening method, based on the first step of molecular dynamics simulation, that is able to predict putative ECD-PRR/glycan interactions. This method has been developed and optimized with Arabidopsis LysM-PRR members CERK1 and LYK4, which are involved in the perception of fungal MAMPs, chitohexaose (1,4-ß-d-(GlcNAc)6 ) and laminarihexaose (1,3-ß-d-(Glc)6 ). Our in silico results predicted CERK1 interactions with 1,4-ß-d-(GlcNAc)6 whilst discarding its direct binding by LYK4. In contrast, no direct interaction between CERK1/laminarihexaose was predicted by the model despite CERK1 being required for laminarihexaose immune activation, suggesting that CERK1 may act as a co-receptor for its recognition. These in silico results were validated by isothermal titration calorimetry binding assays between these MAMPs and recombinant ECDs-LysM-PRRs. The robustness of the developed computational screening method was further validated by predicting that CERK1 does not bind the DAMP 1,4-ß-d-(Glc)6 (cellohexaose), and then probing that immune responses triggered by this DAMP were not impaired in the Arabidopsis cerk1 mutant. The computational predictive glycan/PRR binding method developed here might accelerate the discovery of protein-glycan interactions and provide information on immune responses activated by glycoligands.
Subject(s)
Plant Diseases/immunology , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Oligosaccharides/metabolism , Plant Immunity/genetics , Plant Immunity/physiology , Receptors, Pattern Recognition/metabolism , Signal Transduction/physiologyABSTRACT
In Arabidopsis (Arabidopsis thaliana), a hypersensitive-like response (HR-like response) is triggered underneath the eggs of the large white butterfly Pieris brassicae (P. brassicae), and this response is dependent on salicylic acid (SA) accumulation and signaling. Previous reports indicate that the clade I L-type LECTIN RECEPTOR KINASE-I.8 (LecRK-I.8) is involved in early steps of egg recognition. A genome-wide association study was used to better characterize the genetic structure of the HR-like response and discover loci that contribute to this response. We report here the identification of LecRK-I.1, a close homolog of LecRK-I.8, and show that two main haplotypes that explain part of the variation in HR-like response segregate among natural Arabidopsis accessions. Besides, signatures of balancing selection at this locus suggest that it may be ecologically important. Disruption of LecRK-I.1 results in decreased HR-like response and SA signaling, indicating that this protein is important for the observed responses. Furthermore, we provide evidence that LecRK-I.1 functions in the same signaling pathway as LecRK-I.8. Altogether, our results show that the response to eggs of P. brassicae is controlled by multiple LecRKs.
Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Cell Death/genetics , Cell Death/immunology , Plant Immunity/genetics , Plant Immunity/immunology , Protein Serine-Threonine Kinases/immunology , Animals , Arabidopsis/genetics , Arabidopsis/immunology , Gene Expression Regulation, Plant , Genes, Plant , Insecta/parasitology , OvumABSTRACT
Plant-unique membrane receptor kinases with leucine-rich repeat ectodomains (LRR-RKs) can sense small molecule, peptide, and protein ligands. Many LRR-RKs require SERK-family coreceptor kinases for high-affinity ligand binding and receptor activation. How one coreceptor can contribute to the specific binding of distinct ligands and activation of different LRR-RKs is poorly understood. Here we quantitatively analyze the contribution of SERK3 to ligand binding and activation of the brassinosteroid receptor BRI1 and the peptide hormone receptor HAESA. We show that while the isolated receptors sense their respective ligands with drastically different binding affinities, the SERK3 ectodomain binds the ligand-associated receptors with very similar binding kinetics. We identify residues in the SERK3 N-terminal capping domain, which allow for selective steroid and peptide hormone recognition. In contrast, residues in the SERK3 LRR core form a second, constitutive receptor-coreceptor interface. Genetic analyses of protein chimera between BRI1 and SERK3 define that signaling-competent complexes are formed by receptor-coreceptor heteromerization in planta. A functional BRI1-HAESA chimera suggests that the receptor activation mechanism is conserved among different LRR-RKs, and that their signaling specificity is encoded in the kinase domain of the receptor. Our work pinpoints the relative contributions of receptor, ligand, and coreceptor to the formation and activation of SERK-dependent LRR-RK signaling complexes regulating plant growth and development.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Proteins/metabolism , Receptors, Cell Surface/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Kinetics , Leucine-Rich Repeat Proteins , Ligands , Plant Development , Protein Binding , Protein Conformation , Protein Kinases/chemistry , Protein Serine-Threonine Kinases/chemistry , Proteins/chemistry , Receptors, Cell Surface/chemistry , Signal TransductionABSTRACT
Arabidopsis root development is orchestrated by signaling pathways that consist of different CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands and their cognate CLAVATA (CLV) and BARELY ANY MERISTEM (BAM) receptors. How and where different CLE peptides trigger specific morphological or physiological changes in the root is poorly understood. Here, we report that the receptor-like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) are necessary to fully sense root-active CLE peptides. We uncover BAM3 as the CLE45 receptor in the root and biochemically map its peptide binding surface. In contrast to other plant peptide receptors, we found no evidence that SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) proteins act as co-receptor kinases in CLE45 perception. CRN stabilizes BAM3 expression and thus is required for BAM3-mediated CLE45 signaling. Moreover, protophloem-specific CRN expression complements resistance of the crn mutant to root-active CLE peptides, suggesting that protophloem is their principal site of action. Our work defines a genetic framework for dissecting CLE peptide signaling and CLV/BAM receptor activation in the root.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Membrane Proteins/metabolism , Phloem/physiology , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Membrane Proteins/genetics , Peptides/genetics , Peptides/metabolism , Phloem/genetics , Plant Roots/physiology , Plants, Genetically Modified , Protein Serine-Threonine Kinases/genetics , Receptors, Cell Surface/genetics , Signal TransductionABSTRACT
Brassinosteroids, which control plant growth and development, are sensed by the membrane receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1). Brassinosteroid binding to the BRI1 leucine-rich repeat (LRR) domain induces heteromerisation with a SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK)-family co-receptor. This process allows the cytoplasmic kinase domains of BRI1 and SERK to interact, trans-phosphorylate and activate each other. Here we report crystal structures of the BRI1 kinase domain in its activated form and in complex with nucleotides. BRI1 has structural features reminiscent of both serine/threonine and tyrosine kinases, providing insight into the evolution of dual-specificity kinases in plants. Phosphorylation of Thr1039, Ser1042 and Ser1044 causes formation of a catalytically competent activation loop. Mapping previously identified serine/threonine and tyrosine phosphorylation sites onto the structure, we analyse their contribution to brassinosteroid signaling. The location of known genetic missense alleles provide detailed insight into the BRI1 kinase mechanism, while our analyses are inconsistent with a previously reported guanylate cyclase activity. We identify a protein interaction surface on the C-terminal lobe of the kinase and demonstrate that the isolated BRI1, SERK2 and SERK3 cytoplasmic segments form homodimers in solution and have a weak tendency to heteromerise. We propose a model in which heterodimerisation of the BRI1 and SERK ectodomains brings their cytoplasmic kinase domains in a catalytically competent arrangement, an interaction that can be modulated by the BRI1 inhibitor protein BKI1.
Subject(s)
Arabidopsis/metabolism , Brassinosteroids/metabolism , Serine/metabolism , Signal Transduction/physiology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Mutation , Phosphorylation , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Threonine/metabolismABSTRACT
Abscisic acid (ABA) is a key hormone regulating plant growth, development and the response to biotic and abiotic stress. ABA binding to pyrabactin resistance (PYR)/PYR1-like (PYL)/Regulatory Component of Abscisic acid Receptor (RCAR) intracellular receptors promotes the formation of stable complexes with certain protein phosphatases type 2C (PP2Cs), leading to the activation of ABA signalling. The PYR/PYL/RCAR family contains 14 genes in Arabidopsis and is currently the largest plant hormone receptor family known; however, it is unclear what functional differentiation exists among receptors. Here, we identify two distinct classes of receptors, dimeric and monomeric, with different intrinsic affinities for ABA and whose differential properties are determined by the oligomeric state of their apo forms. Moreover, we find a residue in PYR1, H60, that is variable between family members and plays a key role in determining oligomeric state. In silico modelling of the ABA activation pathway reveals that monomeric receptors have a competitive advantage for binding to ABA and PP2Cs. This work illustrates how receptor oligomerization can modulate hormonal responses and more generally, the sensitivity of a ligand-dependent signalling system.
Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Membrane Transport Proteins/metabolism , Models, Biological , Phosphoprotein Phosphatases/metabolism , Protein Binding , Protein Phosphatase 2C , Receptors, Cell Surface/metabolism , ThermodynamicsABSTRACT
BACKGROUND: The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. RESULTS: In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out mutant seedlings show that the molecular programme that the plant deploys after the treatment with the herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate. CONCLUSIONS: These results points to an unknown GCN2-dependent factor involved in the cascade of events triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of enzyme inhibition.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Glycine/analogs & derivatives , Protein Kinases/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Glycine/pharmacology , Mutation/genetics , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Plant Stomata/drug effects , Plant Stomata/physiology , Plant Transpiration/drug effects , Protein Kinases/genetics , Seedlings/drug effects , Seedlings/genetics , Shikimic Acid/metabolism , Transcriptome/drug effects , Transcriptome/genetics , GlyphosateABSTRACT
The plant hormone abscisic acid (ABA) has a central role in coordinating the adaptive response in situations of decreased water availability as well as the regulation of plant growth and development. Recently, a 14-member family of intracellular ABA receptors, named PYR/PYL/RCAR, has been identified. These proteins inhibit in an ABA-dependent manner the activity of a family of key negative regulators of the ABA signalling pathway: the group-A protein phosphatases type 2C (PP2Cs). Here we present the crystal structure of Arabidopsis thaliana PYR1, which consists of a dimer in which one of the subunits is bound to ABA. In the ligand-bound subunit, the loops surrounding the entry to the binding cavity fold over the ABA molecule, enclosing it inside, whereas in the empty subunit they form a channel leaving an open access to the cavity, indicating that conformational changes in these loops have a critical role in the stabilization of the hormone-receptor complex. By providing structural details on the ABA-binding pocket, this work paves the way for the development of new small molecules able to activate the plant stress response.
Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Models, Molecular , Arabidopsis , Protein Binding , Protein Structure, TertiaryABSTRACT
Arabidopsis primary root growth response to phosphate (Pi) deficiency is mainly controlled by changes in apoplastic iron (Fe). Upon Pi deficiency, apoplastic Fe deposition in the root apical meristem activates pathways leading to the arrest of meristem maintenance and inhibition of cell elongation. Here, we report that a member of the uncharacterized cytochrome b561 and DOMON domain (CYBDOM) protein family, named CRR, promotes iron reduction in an ascorbate-dependent manner and controls apoplastic iron deposition. Under low Pi, the crr mutant shows an enhanced reduction of primary root growth associated with increased apoplastic Fe in the root meristem and a reduction in meristematic cell division. Conversely, CRR overexpression abolishes apoplastic Fe deposition rendering primary root growth insensitive to low Pi. The crr single mutant and crr hyp1 double mutant, harboring a null allele in another member of the CYDOM family, shows increased tolerance to high-Fe stress upon germination and seedling growth. Conversely, CRR overexpression is associated with increased uptake and translocation of Fe to the shoot and results in plants highly sensitive to Fe excess. Our results identify a ferric reductase implicated in Fe homeostasis and developmental responses to abiotic stress, and reveal a biological role for CYBDOM proteins in plants.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Roots/metabolism , Homeostasis , Iron/metabolism , Phosphates/metabolism , Gene Expression Regulation, PlantABSTRACT
Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/metabolism , Peptides/metabolism , Plants/metabolism , Cell Wall/metabolism , Plant Roots/metabolismABSTRACT
A communication system between plant cells and their surrounding cell wall is required to coordinate development, immunity, and the integration of environmental cues. This communication network is facilitated by a large pool of membrane- and cell-wall-anchored proteins that can potentially interact with the matrix or its fragments, promoting cell wall patterning or eliciting cellular responses that may lead to changes in the architecture and chemistry of the wall. A mechanistic understanding of how these receptors and cell wall proteins recognize and interact with cell wall epitopes would be key to a better understanding of all plant processes that require cell wall remodeling such as expansion, morphogenesis, and defense responses. This review focuses on the latest developments in structurally and biochemically characterized receptors and protein complexes implicated in reading and regulating cell wall integrity and immunity.
Subject(s)
Cell Wall , Signal Transduction , Cell Wall/metabolism , Plants/metabolismABSTRACT
Most organisms adjust their development according to the environmental conditions. For the majority, this implies the sensing of alterations to cell walls caused by different cues. Despite the relevance of this process, few molecular players involved in cell wall sensing are known and characterized. Here, we show that the wall-associated kinase-like protein RESISTANCE TO FUSARIUM OXYSPORUM 1 (RFO1) is required for plant growth and early defense against Fusarium oxysporum and functions by sensing changes in the pectin methylation levels in the cell wall. The RFO1 dwell time at the plasma membrane is affected by the pectin methylation status at the cell wall, regulating MITOGEN-ACTIVATED PROTEIN KINASE and gene expression. We show that the extracellular domain of RFO1 binds de-methylated pectin in vitro, whose distribution in the cell wall is altered during F. oxysporum infection. Further analyses also indicate that RFO1 is required for the BR-dependent plant growth alteration in response to inhibition of pectin de-methyl-esterase activity at the cell wall. Collectively, our work demonstrates that RFO1 is a sensor of the pectin methylation status that plays a unique dual role in plant growth and defense against vascular pathogens.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Fusarium , Pectins , Plant Immunity , Arabidopsis/growth & development , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant , Methylation , Pectins/metabolism , Protein Kinases/metabolism , Fusarium/immunologyABSTRACT
Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.