Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Med Genet ; 57(7): 466-474, 2020 07.
Article in English | MEDLINE | ID: mdl-32277047

ABSTRACT

PURPOSE: Marfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan-Fryns syndrome explain no more than 20% of subjects. METHODS: To further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic. RESULTS: We identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, EHMT1, ZEB2 and ATP1A1) met conservative Bonferroni genomewide significance for an excess of the observed de novo point variants. Overall, at least one pathogenic or likely pathogenic variant was identified in 54.7% of subjects (35/64). These variants fell within 27 genes previously associated with Mendelian disorders, including NSD1 and NFIX, which are known to be mutated in overgrowth syndromes. CONCLUSION: We demonstrated that DNVs were enriched in chromatin remodelling (p=2×10-4) and genes regulated by the fragile X mental retardation protein (p=3×10-8), highlighting overlapping genetic mechanisms between MHID and related neurodevelopmental disorders.


Subject(s)
Craniofacial Abnormalities/genetics , Histone-Lysine N-Methyltransferase/genetics , Intellectual Disability/genetics , Marfan Syndrome/genetics , Mental Retardation, X-Linked/genetics , NFI Transcription Factors/genetics , Adolescent , Adult , Child , Chromatin Assembly and Disassembly , Craniofacial Abnormalities/pathology , Exome/genetics , Female , Genetic Predisposition to Disease , Humans , Intellectual Disability/pathology , Male , Marfan Syndrome/pathology , Mental Retardation, X-Linked/pathology , Middle Aged , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Exome Sequencing , Young Adult
2.
J Hum Genet ; 61(8): 693-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27193221

ABSTRACT

Otopalatodigital spectrum disorders (OPDSD) constitute a group of dominant X-linked osteochondrodysplasias including four syndromes: otopalatodigital syndromes type 1 and type 2 (OPD1 and OPD2), frontometaphyseal dysplasia, and Melnick-Needles syndrome. These syndromes variably associate specific facial and extremities features, hearing loss, cleft palate, skeletal dysplasia and several malformations, and show important clinical overlap over the different entities. FLNA gain-of-function mutations were identified in these conditions. FLNA encodes filamin A, a scaffolding actin-binding protein. Here, we report phenotypic descriptions and molecular results of FLNA analysis in a large series of 27 probands hypothesized to be affected by OPDSD. We identified 11 different missense mutations in 15 unrelated probands (n=15/27, 56%), of which seven were novel, including one of unknown significance. Segregation analyses within families made possible investigating 20 additional relatives carrying a mutation. This series allows refining the phenotypic and mutational spectrum of FLNA mutations causing OPDSD, and providing suggestions to avoid the overdiagnosis of OPD1.


Subject(s)
Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/genetics , Genetic Association Studies , Hand Deformities, Congenital/diagnosis , Hand Deformities, Congenital/genetics , Mutation , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/genetics , Phenotype , Alleles , Amino Acid Substitution , Exons , Facies , Female , Filamins/genetics , Humans , Male , Pedigree , Sequence Analysis, DNA
3.
Muscle Nerve ; 52(5): 895-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25959956

ABSTRACT

INTRODUCTION: Cylindrical spirals are characteristic muscular inclusions consisting of spiraling double-laminated membranes. They are found in heterogeneous clinical conditions. METHODS: We obtained muscle biopsies from 2 young sisters with severe congenital hypotonia, muscle weakness, and epileptic encephalopathy, and identified cylindrical spirals. RESULTS: We found an association between congenital encephalomyopathy and cylindrical spirals. CONCLUSIONS: In this morphological and ultrastructural study, we speculate on the origin of these peculiar structures.


Subject(s)
Hyperventilation/complications , Hyperventilation/diagnosis , Intellectual Disability/complications , Intellectual Disability/diagnosis , Muscle Weakness/complications , Muscle Weakness/diagnosis , Sarcolemma/pathology , Adolescent , Child , Facies , Female , Humans , Muscular Diseases/complications , Muscular Diseases/diagnosis
4.
Am J Med Genet A ; 164A(9): 2344-50, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24845202

ABSTRACT

Waardenburg syndrome (WS) is characterized by an association of pigmentation abnormalities and sensorineural hearing loss. Four types, defined on clinical grounds, have been delineated, but this phenotypic classification correlates imperfectly with known molecular anomalies. SOX10 mutations have been found in patients with type II and type IV WS (i.e., with Hirschsprung disease), more complex syndromes, and partial forms of the disease. The phenotype induced by SOX10 mutations is highly variable and, except for the neurological forms of the disease, no genotype-phenotype correlation has been characterized to date. There is no mutation hotspot in SOX10 and most cases are sporadic, making it particularly difficult to correlate the phenotypic and genetic variability. This study reports on three independent families with SOX10 mutations predicted to result in the same missense mutation at the protein level (p.Met112Ile), offering a rare opportunity to improve our understanding of the mechanisms underlying phenotypic variability. The pigmentation defects of these patients are very similar, and the neurological symptoms showed a somewhat similar evolution over time, indicating a potential partial genotype-phenotype correlation. However, variability in gastrointestinal symptoms suggests that other genetic factors contribute to the expression of these phenotypes. No correlation between the rs2435357 polymorphism of RET and the expression of Hirschsprung disease was found. In addition, one of the patients has esophageal achalasia, which has rarely been described in WS.


Subject(s)
Mutation/genetics , Polymorphism, Single Nucleotide/genetics , SOXE Transcription Factors/genetics , Waardenburg Syndrome/genetics , Waardenburg Syndrome/pathology , Adolescent , Adult , Child , Child, Preschool , Family , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pedigree , Phenotype , Proto-Oncogene Mas
5.
Cells ; 9(3)2020 03 20.
Article in English | MEDLINE | ID: mdl-32245113

ABSTRACT

Variants in LMNA, encoding A-type lamins, are responsible for laminopathies including muscular dystrophies, lipodystrophies, and progeroid syndromes. Cardiovascular laminopathic involvement is classically described as cardiomyopathy in striated muscle laminopathies, and arterial wall dysfunction and/or valvulopathy in lipodystrophic and/or progeroid laminopathies. We report unexpected cardiovascular phenotypes in patients with LMNA-associated lipodystrophies, illustrating the complex multitissular pathophysiology of the disease and the need for specific cardiovascular investigations in affected patients. A 33-year-old woman was diagnosed with generalized lipodystrophy and atypical progeroid syndrome due to the newly identified heterozygous LMNA p.(Asp136Val) variant. Her complex cardiovascular phenotype was associated with atherosclerosis, aortic valvular disease and left ventricular hypertrophy with rhythm and conduction defects. A 29-year-old woman presented with a partial lipodystrophy syndrome and a severe coronary atherosclerosis which required a triple coronary artery bypass grafting. She carried the novel heterozygous p.(Arg60Pro) LMNA variant inherited from her mother, affected with partial lipodystrophy and dilated cardiomyopathy. Different lipodystrophy-associated LMNA pathogenic variants could target cardiac vasculature and/or muscle, leading to complex overlapping phenotypes. Unifying pathophysiological hypotheses should be explored in several cell models including adipocytes, cardiomyocytes and vascular cells. Patients with LMNA-associated lipodystrophy should be systematically investigated with 24-h ECG monitoring, echocardiography and non-invasive coronary function testing.


Subject(s)
Cardiovascular Diseases/pathology , Lamin Type A/genetics , Lipodystrophy/genetics , Adult , Cardiovascular Diseases/diagnostic imaging , Coronary Angiography , Electrocardiography , Female , Humans , Lipodystrophy/diagnostic imaging , Male , Pedigree , Phenotype
8.
Eur J Paediatr Neurol ; 18(1): 38-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24100172

ABSTRACT

Duchenne muscular dystrophy (DMD) is one of the most common hereditary degenerative neuromuscular diseases and caused by mutations in the dystrophin gene. The objective of the retrospective study was to describe growth and psychomotor development of patients with DMD and to detect a possible genotype-phenotype correlation. Data from 263 patients with DMD (mean age 7.1 years) treated at the Departments of Pediatric Neurology in three German University Hospitals was assessed with respect to body measurements (length, weight, body mass index BMI, head circumference OFC), motor and cognitive development as well as genotype (site of mutation). Anthropometric measures and developmental data were compared to those of a reference population and deviations were analyzed for their frequency in the cohort as well as in relation to the genotypes. Corticosteroid therapy was implemented in 29 from 263 patients. Overall 30% of the patients exhibit a short statue (length < 3rd centile) with onset early in development at 2-5 years of age, and this is even more prevalent when steroid therapy is applied (45% of patients with steroid therapy). The BMI shows a rightwards shift (68% > 50th centile) and the OFC a leftwards shift (65% < 50th centile, 5% microcephaly). Gross motor development is delayed in a third of the patients (mean age at walking 18.3 months, 30% > 18 months, 8% > 24 months). Almost half of the patients show cognitive impairment (26% learning disability, 17% intellectual disability). Although there is no strict genotype-phenotype correlation, particularly mutations in the distal part of the dystrophin gene are frequently associated with short stature and a high rate of microcephaly as well as cognitive impairment.


Subject(s)
Developmental Disabilities/physiopathology , Growth and Development/genetics , Growth/physiology , Muscular Dystrophy, Duchenne/physiopathology , Adolescent , Body Height/physiology , Body Weight/physiology , Child , Child, Preschool , Developmental Disabilities/etiology , Developmental Disabilities/genetics , Genotype , Head/growth & development , Humans , Intellectual Disability/etiology , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Learning Disabilities/etiology , Learning Disabilities/genetics , Learning Disabilities/physiopathology , Male , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/pathology , Phenotype , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL