Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
Nat Commun ; 8: 14478, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28211535

ABSTRACT

In search of antiparasitic agents, we here identify arylmethylamino steroids as potent compounds and characterize more than 60 derivatives. The lead compound 1o is fast acting and highly active against intraerythrocytic stages of chloroquine-sensitive and resistant Plasmodium falciparum parasites (IC50 1-5 nM) as well as against gametocytes. In P. berghei-infected mice, oral administration of 1o drastically reduces parasitaemia and cures the animals. Furthermore, 1o efficiently blocks parasite transmission from mice to mosquitoes. The steroid compounds show low cytotoxicity in mammalian cells and do not induce acute toxicity symptoms in mice. Moreover, 1o has a remarkable activity against the blood-feeding trematode parasite Schistosoma mansoni. The steroid and the hydroxyarylmethylamino moieties are essential for antimalarial activity supporting a chelate-based quinone methide mechanism involving metal or haem bioactivation. This study identifies chemical scaffolds that are rapidly internalized into blood-feeding parasites.


Subject(s)
Amines/pharmacology , Antiparasitic Agents/pharmacology , Steroids/pharmacology , Amines/chemistry , Amines/pharmacokinetics , Animals , Anopheles/parasitology , Anti-Infective Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacokinetics , Cell Death/drug effects , Cell Proliferation/drug effects , Female , Germ Cells/drug effects , Inhibitory Concentration 50 , Life Cycle Stages/drug effects , Malaria/parasitology , Malaria/transmission , Mice , Models, Biological , Parasites/drug effects , Plasmodium berghei/drug effects , Plasmodium berghei/growth & development , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Schistosoma mansoni/drug effects , Schistosoma mansoni/ultrastructure , Steroids/chemistry , Steroids/pharmacokinetics , Toxicity Tests, Acute
3.
PLoS One ; 10(2): e0118104, 2015.
Article in English | MEDLINE | ID: mdl-25692552

ABSTRACT

A simple and efficient synthesis of novel, D-ring substituted estrone derivatives containing a 16α-triazolyl moiety is described. Two epimeric azido alcohols (16α-azido-17α-hydroxy and 16α-azido-17ß-hydroxy) of estra-1,3,5(10)-triene-3-methyl ether were prepared, followed by copper(I)-catalyzed azide-alkyne cycloaddition with various terminal alkynes. The steroidal triazoles were obtained in high yields and their activities against three human cancer cell lines (HeLa, MCF7 and A431) were screened. The most effective analogs were submitted to additional experiments in order to characterize their antiproliferative properties. As evidenced by flow cytometry, the selected steroids induced a disturbance in the HeLa cell cycle in a concentration- and exposure-dependent manner, through an increase of the hypodiploid population (subG1) and a cell cycle arrest in the G2/M phase. A noncancerous human fibroblast cell line (MRC5) was used to determine the selectivities of these compounds. Fluorescent microscopy after Hoechst 33258 - propidium iodide (HOPI) double staining revealed nuclear condensation and disturbed cell membrane integrity. The enhanced activities of caspase-3 and caspase-9 without activation of caspase-8 in the treated cells indicated the activation of the intrinsic pathway of apoptosis. The levels of cell cycle regulators (CDK1, cyclin B1/B2 and cdc25B) were decreased and the ratio Bax/Bcl-2 was increased 24 h after the treatment of HeLa cells (determined at an mRNA level by means of an RT-PCR technique). Under the same conditions, two agents elicited substantially increased degrees of phosphorylation of stathmin, as evidenced by Western blotting. The presented results demonstrate that these steroids can be regarded as appropriate structural scaffolds for the design and synthesis of further steroid analogs as innovative drug candidates with good efficacy.


Subject(s)
Estrone/chemistry , Estrone/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Cell Cycle/drug effects , Cell Division/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin B1/metabolism , Estrone/analogs & derivatives , Estrone/chemical synthesis , Flow Cytometry , HeLa Cells , Humans , MCF-7 Cells
4.
J Biotechnol ; 90(2): 73-94, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12069195

ABSTRACT

The Collaborative Research Center (CRC) 436 'Metal-Mediated Reactions Modeled after Nature' was founded for the express purpose of analyzing the catalytic principles of metallo-enzymes in order to construct efficient catalysts on a chemical basis. The structure of the active center and neighboring chemical environment in enzymes serves as a focal point for developing reactivity models for the chemical redesign of catalysts. Instead of simply copying enzyme construction, we strive to achieve new chemical intuition based on the results of long-lasting natural evolution. We hope for success, since nature uses a limited set of building blocks, whereas we can apply the full repertoire of chemistry. Key substrates in this approach are small molecules, such as CO2, O2 NO3- and N2. Nature complexes these substrates, activates them and performs chemical transformations--all within the active center of a metalloenzyme. In this article, we report on some aspects and first results of the Collaborative Research Center (CRC) 436, such as nitrate reductase, sphingolipid desaturase, carbonic anhydrase, leucine aminopeptidase and dopamine beta-monooxygenase.


Subject(s)
Enzymes/chemical synthesis , Enzymes/metabolism , Metals/chemistry , Metals/metabolism , Models, Chemical , Molecular Mimicry , Animals , Catalysis , Cattle , Models, Molecular , Molecular Conformation , Molecular Structure , Stereoisomerism , Structure-Activity Relationship , Substrate Specificity
5.
Steroids ; 68(3): 289-95, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12628692

ABSTRACT

The epoxidation, the addition of hypobromous acid, and the hydroboration of 3-methoxy-13alpha-estra-1,3,5(10),16-tetraene 1 with diborane, catecholborane, and 9-BBN were investigated in order to determine the stereochemical outcome and to synthesize new 13alpha-estra-1,3,5(10)-trienes for biological and conformational investigations. It was shown that the sterically demanding reagent 9-BBN participated in a preferred beta attack (53% 16betaOH 10, 34% 17betaOH 8, 13% 16alphaOH 11). This stereochemical result is in agreement with that from another cis addition reaction, the recently described OsO4 dihydroxylation of 1 [Steroids 68 (2003) 113]. With smaller reagents such as B2H6, catecholborane, or magnesium monoperoxyphthalate, a diminished stereoselectivity was observed with only a slight excess of beta attack. The ionic trans addition of hypobromous acid gave two 17-bromo-16-alcohols with 16beta,17alpha (4, 76%) and 16alpha,17beta configuration (5, 24%) formed by trans cleavage of the 16,17alpha- and beta-bromonium ion at position 16. The same regioselective and stereoselective course was found for the cleavage of the 16alpha,17alpha- and 16beta,17beta-epoxides (3 and 2) with hydrazoic acid (3-->16betaN3,17alphaOH 7, 2-->16alphaN3,17betaOH 6). The stereochemistry of the addition reactions to 1 can be explained in terms of a twist-boat conformation involving the C ring of compound 1. From a synthetic viewpoint the synthesis of the beta-epoxide 2 from the bromohydrin 4, the cleavage of this epoxide to 16alpha-substituted-17beta-hydroxy compounds, such as 6, and hydroboration/oxidation with 9-BBN to the hitherto unknown 16beta-hydroxy compound 10 are useful procedures. The bromohydrin 5 is the first 13alpha-steroid with a 17beta-bromo substituent. X-ray analysis revealed twist-boat and 16beta-envelope conformations for rings C and D, respectively.


Subject(s)
Boron Compounds/chemical synthesis , Epoxy Compounds/chemistry , Estradiol/analogs & derivatives , Borohydrides/chemical synthesis , Borohydrides/chemistry , Boron Compounds/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bromates/chemistry , Chemistry, Organic/methods , Estradiol/chemical synthesis , Stereoisomerism , X-Ray Diffraction
6.
Steroids ; 67(10): 835-49, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12231119

ABSTRACT

Copper is next to iron the most important element in the biological transport, storage and in redox reactions of dioxygen. A bioanalogous activation of dioxygen with copper complexes is used for catalytical epoxidation, allylic hydroxylation and oxidative coupling of aromatic substrates, for example. With stereochemical information in form of chiral ligands, enantioselective reactions may be possible. Another aspect of interest on copper catalyzed reactions with dioxygen is that the exact mechanism and biological function of some enzymes (especially catechol oxidase) is yet not fully clear. For studies mimicking the copper-containing catechol oxidase appropriate chiral steroid ligands with defined stereochemistry and conformation have been synthesized. The four diastereomeric 16,17-aminoalcohols of the 3-methoxy-estra-1,3,5(10)-triene series have been condensed with salicylic aldehyde and different beta-ketoenols to the chiral ligand types 1-5. These compounds with different steric and electronic properties and different arrangements of the neighboring hydroxy and nitrogen functions were reacted with copper(II) acetate to copper complexes. The structure of these complexes will be discussed. The bioanalogous oxidation of 3,5-di-tbutyl-catechol (dtbc) to the corresponding quinone was catalyzed by most of the complexes, indicating their ability to activate dioxygen. The trans configurations c and d showed an activity one magnitude higher than the cis configurations a and b. Comparing compounds with the same diastereomeric configuration, the main influence was that of the peripheral R(1-3) substituents at the beta-ketoenaminic group which are useful for the fine-tuning of the properties of the copper atoms like redox potential and Lewis acidity.


Subject(s)
Catechol Oxidase/chemistry , Copper/chemistry , Models, Molecular , Steroids/chemical synthesis , Amines/chemistry , Catalysis , Catechols/chemistry , Crystallography, X-Ray , Kinetics , Ligands , Molecular Structure , Stereoisomerism , Steroids/chemistry , Structure-Activity Relationship
7.
Steroids ; 68(2): 113-23, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12606001

ABSTRACT

All four diasteromeric 16,17-diols in the 3-methoxy-13alpha-estra-1,3,5(10)-triene series have been synthesized. The trans-diols 1 and 2 can be obtained by hydroborating the 17-enol acetate 6 (61%, ratio 27:73, preferred alpha attack). OsO(4) dihydroxylation of the olefin 7 yielded the cis-diols 3 and 4 (ratio 13:87). The dihydroxylation proceeds with preference for beta attack caused by a C-ring twist-boat form of 7. The conformations of the diols 2 and 4, the 17-benzyl-17-hydroxy compounds 9 and 10 (obtained by Grignard reaction), and the 16alpha-bromo-17beta-hydroxy compound 8 were determined by X-ray analysis and by 1H NMR spectroscopy in solution. Some compounds, in spite of a 17beta-hydroxy group, had a conformation with a ring C chair form (4, 8, 9) caused by intermolecular interaction in the solid state. The rest of the compounds studied here (2, 10) possessed a conformation with a ring C twist-boat form, which has been also found for all 17beta-substituted compounds in solution. The preferred conformation of the D-ring with 17beta-substituents seems to be the 16beta-envelope form or near this form, but the existence of the 16alpha-envelope form (inversion of the ring D) for some compounds showed great variance in the conformation of ring D, which is substituent dependent.


Subject(s)
Estrenes/chemistry , Estrenes/chemical synthesis , Hydrogen Bonding , Isomerism , Models, Molecular , Molecular Conformation , Solutions , X-Ray Diffraction
9.
Chemistry ; 10(23): 6029-42, 2004 Nov 19.
Article in English | MEDLINE | ID: mdl-15521055

ABSTRACT

Copper(I) complexes incorporating the isomeric bidentate ligands IMPY (iminomethyl-2-pyridines) or AMPY (aminomethylene-2-pyridines) are quite unusual in their ability to bind and activate molecular oxygen. Using these complexes, hydroxylations of nonactivated CH, CH2, or CH3 groups in the gamma-position in relation to the imino-nitrogen atom, and with a specific orientation of one H atom with respect to the binuclear Cu-O species, can be achieved in synthetically useful yields. Through mechanistic studies employing conformationally well-defined molecules (for example, cyclic isoprenoids), coupled with solid-state X-ray structure analyses and force-field calculations, we postulate a seven-membered transition state for this reaction in which six atoms lie approximately in a plane. This plane is defined by the positions of the lone pairs on the nitrogen atoms, as well as the copper and the oxygen atoms. For a successful hydroxylation, one hydrogen atom should be located close to this plane. Prediction of the stereochemical course of these reactions is possible based on a simple geometrical criterion. The convenient introduction of IMPY and AMPY groups as auxiliaries into oxo and primary amino compounds and the simple hydrolysis after the hydroxylation procedure has allowed the synthesis of 3-hydroxy-1-oxo and 3-hydroxy-1-amino compounds. If desired, the 3-hydroxy-1-IMPY and -1-AMPY compounds can be reduced with NaBH4 to obtain 3-hydroxy-1-aminomethylpyridines. For a successful hydroxylation procedure, the method employed for the synthesis of the CuI complexes is very important. Starting either from CuI salts or from CuII salts with a subsequent reduction with benzoin/triethylamine may turn out to be the better way, depending on the ligand and the molecular structure.


Subject(s)
Carbon/chemistry , Copper/chemistry , Hydrogen/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Steroids/chemistry , Camphor/chemistry , Hydrogen Bonding , Hydroxylation , Ligands , Models, Chemical , Models, Molecular , Molecular Structure , Pyridines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL