Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
EMBO Rep ; 24(4): e55789, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36852936

ABSTRACT

Efficient isolation of neurons and glia from the human enteric nervous system (ENS) is challenging because of their rare and fragile nature. Here, we describe a staining panel to enrich ENS cells from the human intestine by fluorescence-activated cell sorting (FACS). We find that CD56/CD90/CD24 co-expression labels ENS cells with higher specificity and resolution than previous methods. Surprisingly, neuronal (CD24, TUBB3) and glial (SOX10) selective markers appear co-expressed by all ENS cells. We demonstrate that this contradictory staining pattern is mainly driven by neuronal fragments, either free or attached to glial cells, which are the most abundant cell types. Live neurons can be enriched by the highest CD24 and CD90 levels. By applying our protocol to isolate ENS cells for single-cell RNA sequencing, we show that these cells can be obtained with high quality, enabling interrogation of the human ENS transcriptome. Taken together, we present a selective FACS protocol that allows enrichment and discrimination of human ENS cells, opening up new avenues to study this complex system in health and disease.


Subject(s)
Enteric Nervous System , Humans , Flow Cytometry , Enteric Nervous System/metabolism , Intestines , Neurons/metabolism , Neuroglia
2.
J Inherit Metab Dis ; 46(1): 101-115, 2023 01.
Article in English | MEDLINE | ID: mdl-36111639

ABSTRACT

Pompe disease is an inherited metabolic myopathy caused by deficiency of acid alpha-glucosidase (GAA), resulting in lysosomal glycogen accumulation. Residual GAA enzyme activity affects disease onset and severity, although other factors, including dysregulation of cytoplasmic glycogen metabolism, are suspected to modulate the disease course. In this study, performed in mice and patient biopsies, we found elevated protein levels of enzymes involved in glucose uptake and cytoplasmic glycogen synthesis in skeletal muscle from mice with Pompe disease, including glycogenin (GYG1), glycogen synthase (GYS1), glucose transporter 4 (GLUT4), glycogen branching enzyme 1 (GBE1), and UDP-glucose pyrophosphorylase (UGP2). Expression levels were elevated before the loss of muscle mass and function. For first time, quantitative mass spectrometry in skeletal muscle biopsies from five adult patients with Pompe disease showed increased expression of GBE1 protein relative to healthy controls at the group level. Paired analysis of individual patients who responded well to treatment with enzyme replacement therapy (ERT) showed reduction of GYS1, GYG1, and GBE1 in all patients after start of ERT compared to baseline. These results indicate that metabolic changes precede muscle wasting in Pompe disease, and imply a positive feedforward loop in Pompe disease, in which lysosomal glycogen accumulation promotes cytoplasmic glycogen synthesis and glucose uptake, resulting in aggravation of the disease phenotype.


Subject(s)
Glycogen Storage Disease Type II , Mice , Animals , Glycogen Storage Disease Type II/genetics , Glycogen/metabolism , alpha-Glucosidases/genetics , Muscle, Skeletal/pathology , Lysosomes/metabolism , Glucose/metabolism
3.
Brain ; 142(4): 867-884, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30879067

ABSTRACT

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/physiology , Adult , Brain/pathology , Carrier Proteins/genetics , Cell Cycle/physiology , Cilia/metabolism , Female , Genetic Association Studies/methods , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Infant , Infant, Newborn , Male , Malformations of Cortical Development/genetics , Malformations of Cortical Development/metabolism , Microcephaly/genetics , Mutation , Nervous System Malformations/genetics , Polymicrogyria/etiology , Polymicrogyria/pathology
4.
STAR Protoc ; 2(2): 100482, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33997810

ABSTRACT

Isolated myofibers offer the possibility of in vitro study of satellite cells in their niche. We describe a mouse myofiber isolation assay to assess satellite cell activation by quantifying myofiber-derived satellite cell progeny. The assay allows isolation of myofibers from a mouse using standard equipment and reagents. It can be used to compare satellite cells across different mouse models or to evaluate their response to treatments, offering a valuable complementary tool for in vitro experimentation.


Subject(s)
Cytological Techniques/methods , Microscopy/methods , Muscle Fibers, Skeletal/cytology , Satellite Cells, Skeletal Muscle , Animals , Mice , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/physiology
5.
Stem Cells Dev ; 30(6): 325-336, 2021 03.
Article in English | MEDLINE | ID: mdl-33593128

ABSTRACT

Bone marrow-derived mesenchymal stem/stromal cells (BMSCs) are fundamental to bone regenerative therapies, tissue engineering, and postmenopausal osteoporosis. Donor variation among patients, cell heterogeneity, and unpredictable capacity for differentiation reduce effectiveness of BMSCs for regenerative cell therapies. The cell surface glycoprotein CD24 exhibits the most prominent differential expression during osteogenic versus adipogenic differentiation of human BMSCs. Therefore, CD24 may represent a selective biomarker for subpopulations of BMSCs with increased osteoblastic potential. In undifferentiated human BMSCs, CD24 cell surface expression is variable among donors (range: 2%-10%) and increased by two to fourfold upon osteogenic differentiation. Strikingly, FACS sorted CD24pos cells exhibit delayed mineralization and reduced capacity for adipocyte differentiation. RNAseq analysis of CD24pos and CD24neg BMSCs identified a limited number of genes with increased expression in CD24pos cells that are associated with cell adhesion, motility, and extracellular matrix. Downregulated genes are associated with cell cycle regulation, and biological assays revealed that CD24pos cells have reduced proliferation. Hence, expression of the cell surface glycoprotein CD24 identifies a subpopulation of human BMSCs with reduced capacity for proliferation and extracellular matrix mineralization. Functional specialization among BMSCs populations may support their regenerative potential and therapeutic success by accommodating cell activities that promote skeletal tissue formation, homeostasis, and repair.


Subject(s)
Biomarkers/metabolism , CD24 Antigen/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Membrane Glycoproteins/genetics , Mesenchymal Stem Cells/metabolism , Adipogenesis/genetics , CD24 Antigen/metabolism , Cells, Cultured , Flow Cytometry/methods , Gene Expression Profiling/methods , Humans , Membrane Glycoproteins/metabolism , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/genetics , RNA-Seq/methods , Time Factors
6.
Ann Transl Med ; 7(13): 280, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31392192

ABSTRACT

Skeletal muscle is capable of efficiently regenerating after damage in a process mediated by tissue-resident stem cells called satellite cells. This regenerative potential is often compromised under muscle-degenerative conditions. Consequently, the damage produced during degeneration is not efficiently repaired and the balance between repair and damage is lost. Here we review recent progress on the role of satellite cell-mediated repair in neuromuscular disorders with a focus on Pompe disease, an inherited metabolic myopathy caused by deficiency of the lysosomal enzyme acid alpha glucosidase (GAA). Studies performed in patient biopsies as well as in Pompe disease mouse models demonstrate that muscle regeneration activity is compromised despite progressing muscle damage. We describe disease-specific mechanisms of satellite cell dysfunction to highlight the differences between Pompe disease and muscle dystrophies. The mechanisms involved provide possible targets for therapy, such as modulation of autophagy, muscle exercise, and pharmacological modulation of satellite cell activation. Most of these approaches are still experimental, although promising in animal models, still warrant caution with respect to their safety and efficiency profile.

7.
Methods Mol Biol ; 387: 169-83, 2008.
Article in English | MEDLINE | ID: mdl-18287631

ABSTRACT

Serial analysis of gene expression (SAGE) and microarrays have found a widespread application, but much ambiguity exists regarding the amalgamation of the data resulting from these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce the need for duplicate experiments and facilitate a more extensive exchange of data within the research community. This requires a measure for the correspondence of the results from different gene expression platforms. To date, a number of cross-platform evaluations (including a few studies using SAGE and Affymetrix GeneChips) have been conducted showing a variable, but overall low, concordance using different overall correlation approaches, such as Up/Down classification, contingency tables, and correlation coefficients. Here, we demonstrate an approach to compare two platforms based on the calculation of the difference between expression ratios observed in each platform for each individual transcript. This approach results in a concordance measure per gene, as opposed to the commonly used overall concordance measures between platforms. This between-ratio difference is a filtering-independent measure for between-platform concordance. Moreover, the between-ratio difference per gene can be used to identify transcripts with similar regulation on both platforms.


Subject(s)
Gene Expression Profiling/statistics & numerical data , Expressed Sequence Tags , Gene Expression Profiling/methods , Humans , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Array Sequence Analysis/statistics & numerical data , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Software Design , Wilms Tumor/genetics
8.
Methods Mol Biol ; 387: 151-68, 2008.
Article in English | MEDLINE | ID: mdl-18287630

ABSTRACT

Several statistical tests have been introduced for the comparison of serial analysis of gene expression (SAGE) libraries to quantitatively analyze the differential expression of genes. As each SAGE library is only one measurement, the necessary information on biological variation or experimental precision is lacking. Therefore, each test includes its own approach to derive such a variance measure from the data set or a theoretical distribution. Because the confidence in tag counts depends on the library size, a test between two or more libraries should be based on original tag counts. When groups of libraries are compared, the test should determine that the proportion of a specific tag in all libraries is the same (null hypothesis), but also offer the possibility to detect specific differences between individual libraries and groups of libraries. The Z-test and the G-test encompass these characteristics and are described for the comparison of two libraries and (two or more) groups of libraries, respectively.


Subject(s)
Expressed Sequence Tags , Gene Expression Profiling/statistics & numerical data , Gene Library , Base Sequence , Biometry , DNA/genetics , Humans , Software
9.
Acta Neuropathol Commun ; 6(1): 119, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30404653

ABSTRACT

Pompe disease is a metabolic myopathy that is caused by glycogen accumulation as a result of deficiency of the lysosomal enzyme acid alpha glucosidase (GAA). Previously, we showed that adult muscle stem cells termed satellite cells are present at normal levels in muscle from patients with Pompe disease, but that these are insufficiently activated to repair the severe muscle pathology. Here we characterized the muscle regenerative response during disease progression in a mouse model of Pompe disease and investigated the intrinsic capacity of Gaa-/- satellite cells to regenerate muscle damage. Gaa-/- mice showed progressive muscle pathology from 15 weeks of age as reflected by increased lysosomal size, decreased fiber diameter and reduced muscle wet weight. Only during the first 15 weeks of life but not thereafter, we detected a gradual increase in centrally nucleated fibers and proliferating satellite cells in Gaa-/- muscle, indicating a mild regenerative response. The levels of Pax7-positive satellite cells were increased in Gaa-/- mice at all ages, most likely as result of enhanced satellite cell activation in young Gaa-/- animals. Surprisingly, both young and old Gaa-/- mice regenerated experimentally-induced muscle injury efficiently as judged by rapid satellite cell activation and complete restoration of muscle histology. In response to serial injury, Gaa-/- mice also regenerated muscle efficiently and maintained the satellite cell pool. These findings suggest that, similar to human patients, Gaa-/- mice have insufficient satellite cell activation and muscle regeneration during disease progression. The initial endogenous satellite cell response in Gaa-/- mice may contribute to the delayed onset of muscle wasting compared to human patients. The rapid and efficient regeneration after experimental muscle injury suggest that Gaa-/- satellite cells are functional stem cells, opening avenues for developing muscle regenerative therapies for Pompe disease.


Subject(s)
Glycogen Storage Disease Type II/pathology , Muscle, Skeletal/physiopathology , Regeneration/genetics , Satellite Cells, Skeletal Muscle/physiology , Age Factors , Animals , Barium Compounds/toxicity , Cardiotoxins/toxicity , Chlorides/toxicity , Disease Models, Animal , Female , Glycogen/metabolism , Glycogen Storage Disease Type II/genetics , Ki-67 Antigen/metabolism , Laminin/metabolism , Lysosomal-Associated Membrane Protein 1/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/drug effects , PAX7 Transcription Factor/metabolism , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
10.
Stem Cell Reports ; 10(6): 1975-1990, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29731431

ABSTRACT

Although skeletal muscle cells can be generated from human induced pluripotent stem cells (iPSCs), transgene-free protocols include only limited options for their purification and expansion. In this study, we found that fluorescence-activated cell sorting-purified myogenic progenitors generated from healthy controls and Pompe disease iPSCs can be robustly expanded as much as 5 × 1011-fold. At all steps during expansion, cells could be cryopreserved or differentiated into myotubes with a high fusion index. In vitro, cells were amenable to maturation into striated and contractile myofibers. Insertion of acid α-glucosidase cDNA into the AAVS1 locus in iPSCs using CRISPR/Cas9 prevented glycogen accumulation in myotubes generated from a patient with classic infantile Pompe disease. In vivo, the expression of human-specific nuclear and sarcolemmar antigens indicated that myogenic progenitors engraft into murine muscle to form human myofibers. This protocol is useful for modeling of skeletal muscle disorders and for using patient-derived, gene-corrected cells to develop cell-based strategies.


Subject(s)
Batch Cell Culture Techniques , Induced Pluripotent Stem Cells/cytology , Muscle Fibers, Skeletal/cytology , CRISPR-Cas Systems , Cell Differentiation , Cell- and Tissue-Based Therapy , Computational Biology/methods , Gene Expression Profiling , Glycogen Storage Disease Type II/therapy , Humans , Regeneration , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Stem Cell Transplantation
11.
FASEB J ; 19(3): 404-6, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15629888

ABSTRACT

Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in children. Improved treatment strategies have increased overall survival, but the response of approximately one-third of the patients is still poor. To increase the knowledge of RMS pathogenesis, we performed the first full transcriptome analysis of RMS using serial analysis of gene expression (SAGE). With a G-test for the simultaneous comparison of subsets of SAGE libraries of normal skeletal muscle, embryonal (ERMS) and alveolar (ARMS) RMS, we identified 251 differentially expressed genes. A literature-mining procedure demonstrated that 158 of these genes have not previously been associated with RMS or normal muscle. Gene Ontology (GO) analysis assigned 198 of the 251 genes to muscle-specific classes, including those involved in normal myogenic development, as well as tumor-related classes. Prominent GO classes were those associated with proliferation and actin reorganization, which are processes that play roles during early muscle development, muscle function, and tumor progression. Using custom microarrays, we confirmed the (up- or down-) regulation of 80% of 98 differentially expressed genes. Another SAGE library of 19- to 22-week-old fetal skeletal muscle was compared with the RMS and normal muscle transcriptomes. Cluster analysis showed that the RMS and fetal muscle SAGE libraries formed one cluster distinct from normal muscle samples. Moreover, the expression profile of 86% of the differentially expressed genes between normal muscle and RMS was highly similar in fetal muscle and RMS. In conclusion, the G-test is a robust tool for analyzing groups of SAGE libraries and correctly identifies genes marking the difference between fully differentiated skeletal muscle and RMS. This study not only substantiates the close association between embryonic myogenesis and RMS development but also provides a rich source of candidate genes to further elucidate the etiology of RMS or to identify diagnostic and/or prognostic markers.


Subject(s)
Gene Expression Profiling , Gene Library , Muscle, Skeletal/chemistry , Muscle, Skeletal/embryology , Rhabdomyosarcoma/genetics , Cell Adhesion , Gene Expression , Glucose/metabolism , Humans , Likelihood Functions , Oligonucleotide Array Sequence Analysis , RNA/metabolism
12.
Circ Cardiovasc Genet ; 9(1): 6-13, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26787432

ABSTRACT

BACKGROUND: Elevated plasma cardiac troponin T (cTnT) levels in patients with neuromuscular disorders may erroneously lead to the diagnosis of acute myocardial infarction or myocardial injury. METHODS AND RESULTS: In 122 patients with Pompe disease, the relationship between cTnT, cardiac troponin I, creatine kinase (CK), CK-myocardial band levels, and skeletal muscle damage was assessed. ECG and echocardiography were used to evaluate possible cardiac disease. Patients were divided into classic infantile, childhood-onset, and adult-onset patients. cTnT levels were elevated in 82% of patients (median 27 ng/L, normal values <14 ng/L). Cardiac troponin I levels were normal in all patients, whereas CK-myocardial band levels were increased in 59% of patients. cTnT levels correlated with CK levels in all 3 subgroups (P<0.001). None of the abnormal ECGs recorded in 21 patients were indicative of acute myocardial infarction, and there were no differences in cTnT levels between patients with and without (n=90) abnormalities on ECG (median 28 ng/L in both groups). The median left ventricular mass index measured with echocardiography was normal in all the 3 subgroups. cTnT mRNA expression in skeletal muscle was not detectable in controls but was strongly induced in patients with Pompe disease. cTnT protein was identified by mass spectrometry in patient-derived skeletal muscle tissue. CONCLUSIONS: Elevated plasma cTnT levels in patients with Pompe disease are associated with skeletal muscle damage, rather than acute myocardial injury. Increased cTnT levels in Pompe disease and likely other neuromuscular disorders should be interpreted with caution to avoid unnecessary cardiac interventions.


Subject(s)
Glycogen Storage Disease Type II/blood , Muscle, Skeletal/metabolism , Troponin T/blood , Adolescent , Adult , Child , Child, Preschool , Creatine Kinase/blood , Electrocardiography , Female , Gene Expression Regulation , Glycogen Storage Disease Type II/pathology , Glycogen Storage Disease Type II/physiopathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Humans , Infant , Male , Middle Aged , Muscle, Skeletal/injuries , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Troponin I/blood
13.
BMC Genomics ; 6: 91, 2005 Jun 14.
Article in English | MEDLINE | ID: mdl-15955238

ABSTRACT

BACKGROUND: Serial Analysis of Gene Expression (SAGE) and microarrays have found a widespread application, but much ambiguity exists regarding the evaluation of these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce the need for duplicate experiments and facilitate a more extensive exchange of data within the research community. This requires a measure for the correspondence of the different gene expression platforms. To date, a number of cross-platform evaluations (including a few studies using SAGE and Affymetrix GeneChips) have been conducted showing a variable, but overall low, concordance. This study evaluates these overall measures and introduces the between-ratio difference as a concordance measure pergene. RESULTS: In this study, gene expression measurements of Unigene clusters represented by both Affymetrix GeneChips HG-U133A and SAGE were compared using two independent RNA samples. After matching of the data sets the final comparison contains a small data set of 1094 unique Unigene clusters, which is unbiased with respect to expression level. Different overall correlation approaches, like Up/Down classification, contingency tables and correlation coefficients were used to compare both platforms. In addition, we introduce a novel approach to compare two platforms based on the calculation of differences between expression ratios observed in each platform for each individual transcript. This approach results in a concordance measure per gene (with statistical probability value), as opposed to the commonly used overall concordance measures between platforms. CONCLUSION: We can conclude that intra-platform correlations are generally good, but that overall agreement between the two platforms is modest. This might be due to the binomially distributed sampling variation in SAGE tag counts, SAGE annotation errors and the intensity variation between probe sets of a single gene in Affymetrix GeneChips. We cannot identify or advice which platform performs better since both have their (dis)-advantages. Therefore it is strongly recommended to perform follow-up studies of interesting genes using additional techniques. The newly introduced between-ratio difference is a filtering-independent measure for between-platform concordance. Moreover, the between-ratio difference per gene can be used to detect transcripts with similar regulation on both platforms.


Subject(s)
Gene Expression Regulation , Molecular Probe Techniques , Oligonucleotide Array Sequence Analysis/methods , Cell Line, Tumor , Cluster Analysis , DNA Probes , DNA, Complementary , Gene Expression , Humans , Microarray Analysis , RNA/metabolism , RNA, Complementary/metabolism , RNA, Messenger/metabolism , RNA, Neoplasm/metabolism , Reproducibility of Results , Sensitivity and Specificity
14.
Acta Neuropathol Commun ; 3: 65, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26510925

ABSTRACT

INTRODUCTION: Muscle stem cells termed satellite cells are essential for muscle regeneration. A central question in many neuromuscular disorders is why satellite cells are unable to prevent progressive muscle wasting. We have analyzed muscle fiber pathology and the satellite cell response in Pompe disease, a metabolic myopathy caused by acid alpha-glucosidase deficiency and lysosomal glycogen accumulation. Pathology included muscle fiber vacuolization, loss of cross striation, and immune cell infiltration. RESULTS: The total number of Pax7-positive satellite cells in muscle biopsies from infantile, childhood onset and adult patients (with different ages and disease severities) were indistinguishable from controls, indicating that the satellite cell pool is not exhausted in Pompe disease. Pax7/Ki67 double stainings showed low levels of satellite cell proliferation similar to controls, while MyoD and Myogenin stainings showed undetectable satellite cell differentiation. Muscle regenerative activity monitored with expression of embryonic Myosin Heavy Chain was weak in the rapidly progressing classic infantile form and undetectable in the more slowly progressive childhood and adult onset disease including in severely affected patients. CONCLUSIONS: These results imply that ongoing muscle wasting in Pompe disease may be explained by insufficient satellite cell activation and muscle regeneration. The preservation of the satellite cell pool may offer a venue for the development of novel treatment strategies directed towards the activation of endogenous satellite cells.


Subject(s)
Glycogen Storage Disease Type II/pathology , Glycogen Storage Disease Type II/physiopathology , Muscle, Skeletal/physiology , Regeneration/physiology , Satellite Cells, Skeletal Muscle/pathology , Adolescent , Adult , Age of Onset , Antigens, CD/metabolism , Case-Control Studies , Child , Child, Preschool , Disease Progression , Female , Humans , Infant , Ki-67 Antigen/metabolism , Male , Muscle Proteins/metabolism , Muscle, Skeletal/pathology , PAX7 Transcription Factor/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL