Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nucleic Acids Res ; 52(9): 5301-5319, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38381071

ABSTRACT

Insoluble cytoplasmic aggregate formation of the RNA-binding protein TDP-43 is a major hallmark of neurodegenerative diseases including Amyotrophic Lateral Sclerosis. TDP-43 localizes predominantly in the nucleus, arranging itself into dynamic condensates through liquid-liquid phase separation (LLPS). Mutations and post-translational modifications can alter the condensation properties of TDP-43, contributing to the transition of liquid-like biomolecular condensates into solid-like aggregates. However, to date it has been a challenge to study the dynamics of this process in vivo. We demonstrate through live imaging that human TDP-43 undergoes nuclear condensation in spinal motor neurons in a living animal. RNA-binding deficiencies as well as post-translational modifications can lead to aberrant condensation and altered TDP-43 compartmentalization. Single-molecule tracking revealed an altered mobility profile for RNA-binding deficient TDP-43. Overall, these results provide a critically needed in vivo characterization of TDP-43 condensation, demonstrate phase separation as an important regulatory mechanism of TDP-43 accessibility, and identify a molecular mechanism of how functional TDP-43 can be regulated.


Subject(s)
DNA-Binding Proteins , Motor Neurons , RNA-Binding Proteins , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Biomolecular Condensates/metabolism , Cell Nucleus/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Homeostasis , Motor Neurons/metabolism , Mutation , Protein Binding , Protein Processing, Post-Translational , RNA/metabolism , RNA/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
2.
Mol Neurobiol ; 60(9): 5034-5054, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37243816

ABSTRACT

Amyotrophic lateral sclerosis (ALS)- and frontotemporal dementia (FTD)-linked mutations in CCNF have been shown to cause dysregulation to protein homeostasis. CCNF encodes for cyclin F, which is part of the cyclin F-E3 ligase complex SCFcyclinF known to ubiquitylate substrates for proteasomal degradation. In this study, we identified a function of cyclin F to regulate substrate solubility and show how cyclin F mechanistically underlies ALS and FTD disease pathogenesis. We demonstrated that ALS and FTD-associated protein sequestosome-1/p62 (p62) was a canonical substrate of cyclin F which was ubiquitylated by the SCFcyclinF complex. We found that SCFcyclin F ubiquitylated p62 at lysine(K)281, and that K281 regulated the propensity of p62 to aggregate. Further, cyclin F expression promoted the aggregation of p62 into the insoluble fraction, which corresponded to an increased number of p62 foci. Notably, ALS and FTD-linked mutant cyclin F p.S621G aberrantly ubiquitylated p62, dysregulated p62 solubility in neuronal-like cells, patient-derived fibroblasts and induced pluripotent stem cells and dysregulated p62 foci formation. Consistently, motor neurons from patient spinal cord tissue exhibited increased p62 ubiquitylation. We suggest that the p.S621G mutation impairs the functions of cyclin F to promote p62 foci formation and shift p62 into the insoluble fraction, which may be associated to aberrant mutant cyclin F-mediated ubiquitylation of p62. Given that p62 dysregulation is common across the ALS and FTD spectrum, our study provides insights into p62 regulation and demonstrates that ALS and FTD-linked cyclin F mutant p.S621G can drive p62 pathogenesis associated with ALS and FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/metabolism , Ubiquitin-Protein Ligases/metabolism , Cyclins/metabolism , Ubiquitination , Mutation/genetics
3.
Front Immunol ; 13: 997786, 2022.
Article in English | MEDLINE | ID: mdl-36341385

ABSTRACT

Microglia are mononuclear phagocytes of mesodermal origin that migrate to the central nervous system (CNS) during the early stages of embryonic development. After colonizing the CNS, they proliferate and remain able to self-renew throughout life, maintaining the number of microglia around 5-12% of the cells in the CNS parenchyma. They are considered to play key roles in development, homeostasis and innate immunity of the CNS. Microglia are exceptionally diverse in their morphological characteristics, actively modifying the shape of their processes and soma in response to different stimuli. This broad morphological spectrum of microglia responses is considered to be closely correlated to their diverse range of functions in health and disease. However, the morphophysiological attributes of microglia, and the structural and functional features of microglia-neuron interactions, remain largely unknown. Here, we assess the current knowledge of the diverse microglial morphologies, with a focus on the correlation between microglial shape and function. We also outline some of the current challenges, opportunities, and future directions that will help us to tackle unanswered questions about microglia, and to continue unravelling the mysteries of microglia, in all its shapes.


Subject(s)
Central Nervous System , Microglia , Microglia/physiology , Neurons , Homeostasis
4.
Mol Neurobiol ; 58(5): 2061-2074, 2021 May.
Article in English | MEDLINE | ID: mdl-33415684

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a form of motor neuron disease (MND) that is characterized by the progressive loss of motor neurons within the spinal cord, brainstem, and motor cortex. Although ALS clinically manifests as a heterogeneous disease, with varying disease onset and survival, a unifying feature is the presence of ubiquitinated cytoplasmic protein inclusion aggregates containing TDP-43. However, the precise mechanisms linking protein inclusions and aggregation to neuronal loss are currently poorly understood. Bimolecular fluorescence complementation (BiFC) takes advantage of the association of fluorophore fragments (non-fluorescent on their own) that are attached to an aggregation-prone protein of interest. Interaction of the proteins of interest allows for the fluorescent reporter protein to fold into its native state and emit a fluorescent signal. Here, we combined the power of BiFC with the advantages of the zebrafish system to validate, optimize, and visualize the formation of ALS-linked aggregates in real time in a vertebrate model. We further provide in vivo validation of the selectivity of this technique and demonstrate reduced spontaneous self-assembly of the non-fluorescent fragments in vivo by introducing a fluorophore mutation. Additionally, we report preliminary findings on the dynamic aggregation of the ALS-linked hallmark proteins Fus and TDP-43 in their corresponding nuclear and cytoplasmic compartments using BiFC. Overall, our data demonstrates the suitability of this BiFC approach to study and characterize ALS-linked aggregate formation in vivo. Importantly, the same principle can be applied in the context of other neurodegenerative diseases and has therefore critical implications to advance our understanding of pathologies that underlie aberrant protein aggregation.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Motor Cortex/metabolism , Motor Neurons/metabolism , Protein Aggregation, Pathological/metabolism , Spinal Cord/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Fluorescence , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Motor Cortex/pathology , Motor Neurons/pathology , Protein Aggregation, Pathological/pathology , Spinal Cord/pathology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL