Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Biol Chem ; 300(7): 107403, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782205

ABSTRACT

Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Although there are functional impairments in both cases, the signaling consequences of primary mitochondrial dysfunction and lysosomal defects are dissimilar. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects to identify the global cellular consequences associated with mitochondrial or lysosomal dysfunction. We used these data to determine the pathways affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. We observed a transcriptional upregulation of this pathway in cellular and murine models of lysosomal defects, while it is transcriptionally downregulated in cellular and murine models of mitochondrial defects. We identified a role for the posttranscriptional regulation of transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, we found that retention of Ca2+ in lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo, using a model of mitochondria-associated disease in Caenorhabditis elegans that normalization of lysosomal Ca2+ levels results in partial rescue of the developmental delay induced by the respiratory chain deficiency.


Subject(s)
Caenorhabditis elegans , Cholesterol , Lysosomes , Mitochondria , Cholesterol/metabolism , Cholesterol/biosynthesis , Lysosomes/metabolism , Animals , Mitochondria/metabolism , Mice , Humans , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Electron Transport , Up-Regulation , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Calcium/metabolism
2.
EMBO Rep ; 19(12)2018 12.
Article in English | MEDLINE | ID: mdl-30366941

ABSTRACT

Interventions that promote healthy aging are typically associated with increased stress resistance. Paradoxically, reducing the activity of core biological processes such as mitochondrial or insulin metabolism promotes the expression of adaptive responses, which in turn increase animal longevity and resistance to stress. In this study, we investigated the relation between the extended Caenorhabditis elegans lifespan elicited by reduction in mitochondrial functionality and resistance to genotoxic stress. We find that reducing mitochondrial activity during development confers germline resistance to DNA damage-induced cell cycle arrest and apoptosis in a cell-non-autonomous manner. We identified the C. elegans homologs of the BRCA1/BARD1 tumor suppressor genes, brc-1/brd-1, as mediators of the anti-apoptotic effect but dispensable for lifespan extension upon mitochondrial stress. Unexpectedly, while reduced mitochondrial activity only in the soma was not sufficient to promote longevity, its reduction only in the germline or in germline-less strains still prolonged lifespan. Thus, in animals with partial reduction in mitochondrial functionality, the mechanisms activated during development to safeguard the germline against genotoxic stress are uncoupled from those required for somatic robustness and animal longevity.


Subject(s)
Apoptosis , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/physiology , Longevity , Mitochondria/metabolism , Stress, Physiological , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Proliferation , DNA Damage , DNA Repair , Germ Cells/cytology , Mitosis
3.
Int J Mol Sci ; 21(6)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213963

ABSTRACT

Background Aryl hydrocarbon receptor (AHR)-deficient mice do not support the expansion of dendritic epidermal T cells (DETC), a resident immune cell population in the murine epidermis, which immigrates from the fetal thymus to the skin around birth. Material and Methods In order to identify the gene expression changes underlying the DETC disappearance in AHR-deficient mice, we analyzed microarray RNA-profiles of DETC, sorted from the skin of two-week-old AHR-deficient mice and their heterozygous littermates. In vitro studies were done for verification, and IL-10, AHR repressor (AHRR), and c-Kit deficient mice analyzed for DETC frequency. Results We identified 434 annotated differentially expressed genes. Gene set enrichment analysis demonstrated that the expression of genes related to proliferation, ion homeostasis and morphology differed between the two mouse genotypes. Importantly, with 1767 pathways the cluster-group "inflammation" contained the majority of AHR-dependently regulated pathways. The most abundant cluster of differentially expressed genes was "inflammation." DETC of AHR-deficient mice were inflammatory active and had altered calcium and F-actin levels. Extending the study to the AHRR, an enigmatic modulator of AHR-activity, we found approximately 50% less DETC in AHRR-deficient mice than in wild-type-littermates. Conclusion AHR-signaling in DETC dampens their inflammatory default potential and supports their homeostasis in the skin.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Dendritic Cells/metabolism , Interleukin-10/metabolism , Repressor Proteins/metabolism , Skin/metabolism , T-Lymphocytes/metabolism , Transcriptome , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cells, Cultured , Female , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Mutation , Repressor Proteins/genetics , Signal Transduction , Skin/cytology
4.
J Med Genet ; 50(8): 543-51, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23749989

ABSTRACT

BACKGROUND AND AIM: We identified a balanced de novo translocation involving chromosomes Xq25 and 8q24 in an eight year-old girl with a non-progressive form of congenital ataxia, cognitive impairment and cerebellar hypoplasia. METHODS AND RESULTS: Breakpoint definition showed that the promoter of the Protein Tyrosine Kinase 2 (PTK2, also known as Focal Adhesion Kinase, FAK) gene on chromosome 8q24.3 is translocated 2 kb upstream of the THO complex subunit 2 (THOC2) gene on chromosome Xq25. PTK2 is a well-known non-receptor tyrosine kinase whereas THOC2 encodes a component of the evolutionarily conserved multiprotein THO complex, involved in mRNA export from nucleus. The translocation generated a sterile fusion transcript under the control of the PTK2 promoter, affecting expression of both PTK2 and THOC2 genes. PTK2 is involved in cell adhesion and, in neurons, plays a role in axonal guidance, and neurite growth and attraction. However, PTK2 haploinsufficiency alone is unlikely to be associated with human disease. Therefore, we studied the role of THOC2 in the CNS using three models: 1) THOC2 ortholog knockout in C.elegans which produced functional defects in specific sensory neurons; 2) Thoc2 knockdown in primary rat hippocampal neurons which increased neurite extension; 3) Thoc2 knockdown in neuronal stem cells (LC1) which increased their in vitro growth rate without modifying apoptosis levels. CONCLUSION: We suggest that THOC2 can play specific roles in neuronal cells and, possibly in combination with PTK2 reduction, may affect normal neural network formation, leading to cognitive impairment and cerebellar congenital hypoplasia.


Subject(s)
Cerebellum/abnormalities , Chromosomes, Human, Pair 8/genetics , Focal Adhesion Kinase 1/genetics , Nervous System Malformations/genetics , Psychomotor Disorders/genetics , RNA-Binding Proteins/genetics , Translocation, Genetic , Animals , Caenorhabditis elegans/genetics , Cell Line, Transformed , Child , Developmental Disabilities/complications , Developmental Disabilities/genetics , Female , Gene Fusion , Humans , Male , Mice , Mice, Inbred C57BL , Nervous System Malformations/complications , Psychomotor Disorders/complications , Rats
5.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496624

ABSTRACT

Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in the cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Nevertheless, the signaling consequences of primary mitochondrial malfunction and of primary lysosomal defects are not similar, despite in both cases there are impairments of mitochondria and of lysosomes. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects, to identify what are the global cellular consequences that are associated with malfunction of mitochondria or lysosomes. We used these data to determine what are the pathways that are affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. This pathway is transcriptionally up-regulated in cellular and mouse models of lysosomal defects and is transcriptionally down-regulated in cellular and mouse models of mitochondrial defects. We identified a role for post-transcriptional regulation of the transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, the retention of Ca 2+ in the lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo , using models of mitochondria-associated diseases in C. elegans , that normalization of lysosomal Ca 2+ levels results in partial rescue of the developmental arrest induced by the respiratory chain deficiency.

6.
iScience ; 26(4): 106448, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37020951

ABSTRACT

Excessive iron accumulation or deficiency leads to a variety of pathologies in humans and developmental arrest in the nematode Caenorhabditis elegans. Instead, sub-lethal iron depletion extends C. elegans lifespan. Hypoxia preconditioning protects against severe hypoxia-induced neuromuscular damage across species but it has low feasible application. In this study, we assessed the potential beneficial effects of genetic and chemical interventions acting via mild iron instead of oxygen depletion. We show that limiting iron availability in C. elegans through frataxin silencing or the iron chelator bipyridine, similar to hypoxia preconditioning, protects against hypoxia-, age-, and proteotoxicity-induced neuromuscular deficits. Mechanistically, our data suggest that the beneficial effects elicited by frataxin silencing are in part mediated by counteracting ferroptosis, a form of non-apoptotic cell death mediated by iron-induced lipid peroxidation. This is achieved by impacting on different key ferroptosis players and likely via gpx-independent redox systems. We thus point to ferroptosis inhibition as a novel potential strategy to promote healthy aging.

7.
Cell Death Discov ; 9(1): 376, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37838776

ABSTRACT

Alzheimer's disease is the most common age-associated neurodegenerative disorder and the most frequent form of dementia in our society. Aging is a complex biological process concurrently shaped by genetic, dietary and environmental factors and natural compounds are emerging for their beneficial effects against age-related disorders. Besides their antioxidant activity often described in simple model organisms, the molecular mechanisms underlying the beneficial effects of different dietary compounds remain however largely unknown. In the present study, we exploit the nematode Caenorhabditis elegans as a widely established model for aging studies, to test the effects of different natural compounds in vivo and focused on mechanistic aspects of one of them, quercetin, using complementary systems and assays. We show that quercetin has evolutionarily conserved beneficial effects against Alzheimer's disease (AD) pathology: it prevents Amyloid beta (Aß)-induced detrimental effects in different C. elegans AD models and it reduces Aß-secretion in mammalian cells. Mechanistically, we found that the beneficial effects of quercetin are mediated by autophagy-dependent reduced expression of Abl tyrosine kinase. In turn, autophagy is required upon Abl suppression to mediate quercetin's protective effects against Aß toxicity. Our data support the power of C. elegans as an in vivo model to investigate therapeutic options for AD.

8.
Front Cell Dev Biol ; 10: 986835, 2022.
Article in English | MEDLINE | ID: mdl-36393859

ABSTRACT

Severe oxygen and iron deficiencies have evolutionarily conserved detrimental effects, leading to pathologies in mammals and developmental arrest as well as neuromuscular degeneration in the nematode Caenorhabditis elegans. Yet, similar to the beneficial effects of mild hypoxia, non-toxic levels of iron depletion, achieved with the iron chelator bipyridine or through frataxin silencing, extend C. elegans lifespan through hypoxia-like induction of mitophagy. While the positive health outcomes of hypoxia preconditioning are evident, its practical application is rather challenging. Here, we thus test the potential beneficial effects of non-toxic, preconditioning interventions acting on iron instead of oxygen availability. We find that limiting iron availability through the iron competing agent cobalt chloride has evolutionarily conserved dose-dependent beneficial effects: while high doses of cobalt chloride have toxic effects in mammalian cells, iPS-derived neurospheres, and in C. elegans, sub-lethal doses protect against hypoxia- or cobalt chloride-induced death in mammalian cells and extend lifespan and delay age-associated neuromuscular alterations in C. elegans. The beneficial effects of cobalt chloride are accompanied by the activation of protective mitochondrial stress response pathways.

9.
Dis Model Mech ; 15(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-35107130

ABSTRACT

Cisplatin is the most common drug in first-line chemotherapy against solid tumors. We and others have previously used the nematode Caenorhabditis elegans to identify genetic factors influencing the sensitivity and resistance to cisplatin. In this study, we used C. elegans to explore cisplatin effects on mitochondrial functions and investigate cisplatin-induced neurotoxicity through a high-resolution system for evaluating locomotion. First, we report that a high-glucose diet sensitizes C. elegans to cisplatin at the physiological level and that mitochondrial CED-13 protects the cell from cisplatin-induced oxidative stress. Additionally, by assessing mitochondrial function with a Seahorse XFe96 Analyzer, we observed a detrimental effect of cisplatin and glucose on mitochondrial respiration. Second, because catechol-O-methyltransferases (involved in dopamine degradation) are upregulated upon cisplatin exposure, we studied the protective role of dopamine against cisplatin-induced neurotoxicity. Using a Tierpsy Tracker system for measuring neurotoxicity, we showed that abnormal displacements and body postures in cat-2 mutants, which have dopamine synthesis disrupted, can be rescued by adding dopamine. Then, we demonstrated that dopamine treatment protects against the dose-dependent neurotoxicity caused by cisplatin.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Cisplatin/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Diseases/chemically induced , Neurotoxicity Syndromes/etiology , Oxidative Stress
10.
Nat Commun ; 13(1): 2620, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551180

ABSTRACT

Complex-I-deficiency represents the most frequent pathogenetic cause of human mitochondriopathies. Therapeutic options for these neurodevelopmental life-threating disorders do not exist, partly due to the scarcity of appropriate model systems to study them. Caenorhabditis elegans is a genetically tractable model organism widely used to investigate neuronal pathologies. Here, we generate C. elegans models for mitochondriopathies and show that depletion of complex I subunits recapitulates biochemical, cellular and neurodevelopmental aspects of the human diseases. We exploit two models, nuo-5/NDUFS1- and lpd-5/NDUFS4-depleted animals, for a suppressor screening that identifies lutein for its ability to rescue animals' neurodevelopmental deficits. We uncover overexpression of synaptic neuroligin as an evolutionarily conserved consequence of mitochondrial dysfunction, which we find to mediate an early cholinergic defect in C. elegans. We show lutein exerts its beneficial effects by restoring neuroligin expression independently from its antioxidant activity, thus pointing to a possible novel pathogenetic target for the human disease.


Subject(s)
Caenorhabditis elegans Proteins , Mitochondrial Diseases , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Lutein/metabolism , Lutein/pharmacology , Mitochondria/metabolism , Mitochondrial Diseases/metabolism
11.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35453298

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.

12.
Cells ; 11(1)2021 12 29.
Article in English | MEDLINE | ID: mdl-35011662

ABSTRACT

The aging process is concurrently shaped by genetic and extrinsic factors. In this work, we screened a small library of natural compounds, many of marine origin, to identify novel possible anti-aging interventions in Caenorhabditis elegans, a powerful model organism for aging studies. To this aim, we exploited a high-content microscopy platform to search for interventions able to induce phenotypes associated with mild mitochondrial stress, which is known to promote animal's health- and lifespan. Worms were initially exposed to three different concentrations of the drugs in liquid culture, in search of those affecting animal size and expression of mitochondrial stress response genes. This was followed by a validation step with nine compounds on solid media to refine compounds concentration, which led to the identification of four compounds (namely isobavachalcone, manzamine A, kahalalide F and lutein) consistently affecting development, fertility, size and lipid content of the nematodes. Treatment of Drosophila cells with the four hits confirmed their effects on mitochondria activity and lipid content. Out of these four, two were specifically chosen for analysis of age-related parameters, kahalalide F and lutein, which conferred increased resistance to heat and oxidative stress and extended animals' healthspan. We also found that, out of different mitochondrial stress response genes, only the C. elegans ortholog of the synaptic regulatory proteins neuroligins, nlg-1, was consistently induced by the two compounds and mediated lutein healthspan effects.


Subject(s)
Biological Products/pharmacology , Caenorhabditis elegans/physiology , Homeostasis , Lipid Metabolism , Mitochondria/metabolism , Adiposity/drug effects , Aging/drug effects , Aging/physiology , Animals , Automation , Biological Products/chemistry , Caenorhabditis elegans/drug effects , Cell Adhesion Molecules, Neuronal/drug effects , Cell Adhesion Molecules, Neuronal/metabolism , Depsipeptides/pharmacology , Drosophila melanogaster/cytology , Fertility/drug effects , Genes, Reporter , Green Fluorescent Proteins/metabolism , Homeostasis/drug effects , Lipid Metabolism/drug effects , Lutein/pharmacology , Mitochondria/drug effects , Phenotype , Reproducibility of Results
13.
Mech Ageing Dev ; 188: 111252, 2020 06.
Article in English | MEDLINE | ID: mdl-32330468

ABSTRACT

Aging is characterized by the deterioration of different cellular and organismal structures and functions. A typical hallmark of the aging process is the accumulation of dysfunctional mitochondria and excess iron, leading to a vicious cycle that promotes cell and tissue damage, which ultimately contribute to organismal aging. Accordingly, altered mitochondrial quality control pathways such as mitochondrial autophagy (mitophagy) as well as altered iron homeostasis, with consequent iron overload, can accelerate the aging process and the development and progression of different age-associated disorders. In this review we first briefly introduce the aging process and summarize molecular mechanisms regulating mitophagy and iron homeostasis. We then provide an overview on how dysfunction of these two processes impact on aging and age-associated neurodegenerative disorders with a focus on Alzheimer's disease, Parkinson's disease and Amyotrophic Lateral Sclerosis. Finally, we summarize some recent evidence showing mechanistic links between iron metabolism and mitophagy and speculate on how regulating the crosstalk between the two processes may provide protective effects against aging and age-associated neuronal pathologies.


Subject(s)
Aging , Cardiovascular Diseases/metabolism , Heart Failure/metabolism , Iron/metabolism , Lysosomes/metabolism , Mitochondria/metabolism , Mitophagy/physiology , Neurons/metabolism , Alzheimer Disease/metabolism , Animals , Autophagy/physiology , Homeostasis , Humans , Oxygen/metabolism , Parkinson Disease/metabolism , Phosphorylation
14.
Aging (Albany NY) ; 13(1): 104-133, 2020 12 13.
Article in English | MEDLINE | ID: mdl-33349622

ABSTRACT

Genetic, dietary, and environmental factors concurrently shape the aging process. The aryl hydrocarbon receptor (AhR) was discovered as a dioxin-binding transcription factor involved in the metabolism of different environmental toxicants in vertebrates. Since then, the variety of pathophysiological processes regulated by the AhR has grown, ranging from immune response, metabolic pathways, and aging. Many modulators of AhR activity may impact on aging and age-associated pathologies, but, whether their effects are AhR-dependent has never been explored. Here, using Caenorhabditis elegans, as an elective model organism for aging studies, we show for the first time that lack of CeAHR-1 can have opposite effects on health and lifespan in a context-dependent manner. Using known mammalian AhR modulators we found that, ahr-1 protects against environmental insults (benzo(a)pyrene and UVB light) and identified a new role for AhR-bacterial diet interaction in animal lifespan, stress resistance, and age-associated pathologies. We narrowed down the dietary factor to a bacterially extruded metabolite likely involved in tryptophan metabolism. This is the first study clearly establishing C. elegans as a good model organism to investigate evolutionarily conserved functions of AhR-modulators and -regulated processes, indicating it can be exploited to contribute to the discovery of novel information about AhR in mammals.


Subject(s)
Aging/genetics , Caenorhabditis elegans Proteins/genetics , Diet , Environment , Longevity/genetics , Receptors, Aryl Hydrocarbon/genetics , Animals , Benzo(a)pyrene/toxicity , Caenorhabditis elegans , Caenorhabditis elegans Proteins/physiology , Escherichia coli/metabolism , Heat-Shock Response/genetics , Mutation , Receptors, Aryl Hydrocarbon/physiology , Stress, Physiological/genetics , Tryptophan/metabolism , Ultraviolet Rays/adverse effects
15.
Aging (Albany NY) ; 11(16): 6535-6554, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31454791

ABSTRACT

Mild suppression of mitochondrial activity has beneficial effects across species. The nematode Caenorhabditis elegans is a versatile, genetically tractable model organism widely employed for aging studies, which has led to the identification of many of the known evolutionarily conserved mechanisms regulating lifespan. In C. elegans the pro-longevity effect of reducing mitochondrial function, for example by RNA interference, is only achieved if mitochondrial stress is applied during larval development. Surprisingly, a careful analysis of changes in mitochondrial functions resulting from such treatments during the developmental windows in which pro-longevity signals are programmed has never been carried out. Thus, although the powerful C. elegans genetics have led to the identification of different molecular mechanisms causally involved in mitochondrial stress control of longevity, specific functional mitochondrial biomarkers indicative or predictive of lifespan remain to be identified. To fill this gap, we systematically characterized multiple mitochondrial functional parameters at an early developmental stage in animals that are long-lived due to mild knockdown of twelve different mitochondrial proteins and correlated these parameters with animals' lifespan. We found that basal oxygen consumption rate and ATP-linked respiration positively correlate with lifespan extension and propose the testable hypothesis that the Bioenergetic Health Index can be used as a proxy to predict health-span outcomes.


Subject(s)
Caenorhabditis elegans/growth & development , Longevity/genetics , Longevity/physiology , Mitochondria/metabolism , Animals , Biomarkers , Gene Expression Regulation, Developmental
16.
Nat Commun ; 10(1): 651, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783116

ABSTRACT

Ageing constitutes the most important risk factor for all major chronic ailments, including malignant, cardiovascular and neurodegenerative diseases. However, behavioural and pharmacological interventions with feasible potential to promote health upon ageing remain rare. Here we report the identification of the flavonoid 4,4'-dimethoxychalcone (DMC) as a natural compound with anti-ageing properties. External DMC administration extends the lifespan of yeast, worms and flies, decelerates senescence of human cell cultures, and protects mice from prolonged myocardial ischaemia. Concomitantly, DMC induces autophagy, which is essential for its cytoprotective effects from yeast to mice. This pro-autophagic response induces a conserved systemic change in metabolism, operates independently of TORC1 signalling and depends on specific GATA transcription factors. Notably, we identify DMC in the plant Angelica keiskei koidzumi, to which longevity- and health-promoting effects are ascribed in Asian traditional medicine. In summary, we have identified and mechanistically characterised the conserved longevity-promoting effects of a natural anti-ageing drug.


Subject(s)
Aging/drug effects , Autophagy/drug effects , Flavonoids/pharmacology , Longevity/drug effects , Aging/physiology , Angelica/chemistry , Animals , Caenorhabditis elegans/drug effects , Cation Transport Proteins/genetics , Cell Death/drug effects , Cell Line/drug effects , Drosophila melanogaster/drug effects , Flavonoids/administration & dosage , GATA Transcription Factors/drug effects , Gene Expression Regulation/drug effects , Humans , Longevity/physiology , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Medicine, East Asian Traditional , Mice , Mice, Inbred C57BL , Myocardial Ischemia/drug therapy , Plant Extracts/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Sirolimus/pharmacology , Transcription Factors/drug effects , Transcription Factors/genetics
17.
Sci Transl Med ; 10(456)2018 08 29.
Article in English | MEDLINE | ID: mdl-30158153

ABSTRACT

Cockayne syndrome (CS), a hereditary form of premature aging predominantly caused by mutations in the csb gene, affects multiple organs including skin where it manifests with hypersensitivity toward ultraviolet (UV) radiation and loss of subcutaneous fat. There is no curative treatment for CS, and its pathogenesis is only partially understood. Originally considered for its role in DNA repair, Cockayne syndrome group B (CSB) protein most likely serves additional functions. Using CSB-deficient human fibroblasts, Caenorhabditiselegans, and mice, we show that CSB promotes acetylation of α-tubulin and thereby regulates autophagy. At the organ level, chronic exposure of csbm/m mice to UVA radiation caused a severe skin phenotype with loss of subcutaneous fat, inflammation, and fibrosis. These changes in skin tissue were associated with an accumulation of autophagic/lysosomal proteins and reduced amounts of acetylated α-tubulin. At the cellular level, we found that CSB directly interacts with the histone deacetylase 6 (HDAC6) and the α-tubulin acetyltransferase MEC-17. Upon UVA irradiation, CSB is recruited to the centrosome where it colocalizes with dynein and HDAC6. Administration of the pan-HDAC inhibitor SAHA (suberoylanilide hydroxamic acid) enhanced α-tubulin acetylation, improved autophagic function in CSB-deficient models from all three species, and rescued the skin phenotype in csbm/m mice. HDAC inhibition may thus represent a therapeutic option for CS.


Subject(s)
Autophagy/drug effects , Cockayne Syndrome/pathology , Histone Deacetylase Inhibitors/pharmacology , Lysosomes/metabolism , Subcutaneous Fat/pathology , Acetylation , Animals , Autophagy/radiation effects , Autophagy-Related Proteins/metabolism , Caenorhabditis elegans/drug effects , Centrosome/drug effects , Centrosome/metabolism , Centrosome/radiation effects , DNA Helicases/deficiency , DNA Helicases/metabolism , DNA Repair Enzymes/deficiency , DNA Repair Enzymes/metabolism , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/radiation effects , Lysosomes/drug effects , Lysosomes/radiation effects , Mice , Phenotype , Poly-ADP-Ribose Binding Proteins/deficiency , Poly-ADP-Ribose Binding Proteins/metabolism , Skin/pathology , Skin/radiation effects , Subcutaneous Fat/drug effects , Subcutaneous Fat/radiation effects , Tubulin/metabolism , Ubiquitinated Proteins/metabolism , Ultraviolet Rays , Vorinostat/pharmacology
18.
DNA Repair (Amst) ; 61: 46-55, 2018 01.
Article in English | MEDLINE | ID: mdl-29202295

ABSTRACT

Oxidation of DNA bases, an inevitable consequence of oxidative stress, requires the base excision repair (BER) pathway for repair. Caenorhabditis elegans is a well-established model to study phenotypic consequences and cellular responses to oxidative stress. To better understand how BER affects phenotypes associated with oxidative stress, we characterised the C. elegans nth-1 mutant, which lack the only DNA glycosylase dedicated to repair of oxidative DNA base damage, the NTH-1 DNA glycosylase. We show that nth-1 mutants have mitochondrial dysfunction characterised by lower mitochondrial DNA copy number, reduced mitochondrial membrane potential, and increased steady-state levels of reactive oxygen species. Consistently, nth-1 mutants express markers of chronic oxidative stress with high basal phosphorylation of MAP-kinases (MAPK) but further activation of MAPK in response to the superoxide generator paraquat is attenuated. Surprisingly, nth-1 mutants also failed to induce apoptosis in response to paraquat. The ability to induce apoptosis in response to paraquat was regained when basal MAPK activation was restored to wild type levels. In conclusion, the failure of nth-1 mutants to induce apoptosis in response to paraquat is not a direct effect of the DNA repair deficiency but an indirect consequence of the compensatory cellular stress response that includes MAPK activation.


Subject(s)
Apoptosis/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , DNA Glycosylases/deficiency , Endonucleases/deficiency , Germ Cells/metabolism , Mitogen-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Caenorhabditis elegans Proteins , Cell Respiration , DNA, Mitochondrial , Gene Dosage , Membrane Potential, Mitochondrial , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism
19.
Aging (Albany NY) ; 8(9): 1876-1895, 2016 08 28.
Article in English | MEDLINE | ID: mdl-27574892

ABSTRACT

Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2, are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans, suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels.


Subject(s)
Aging/genetics , Autophagy/genetics , Circadian Clocks/genetics , Gene Expression , Period Circadian Proteins/genetics , Adult , Aged , Aging/metabolism , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Female , Fibroblasts/metabolism , Humans , Middle Aged , Period Circadian Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Young Adult
20.
Curr Biol ; 25(14): 1810-22, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26144971

ABSTRACT

Frataxin is a nuclear-encoded mitochondrial protein involved in the biogenesis of Fe-S-cluster-containing proteins and consequently in the functionality of the mitochondrial respiratory chain. Similar to other proteins that regulate mitochondrial respiration, severe frataxin deficiency leads to pathology in humans--Friedreich's ataxia, a life-threatening neurodegenerative disorder--and to developmental arrest in the nematode C. elegans. Interestingly, partial frataxin depletion extends C. elegans lifespan, and a similar anti-aging effect is prompted by reduced expression of other mitochondrial regulatory proteins from yeast to mammals. The beneficial adaptive responses to mild mitochondrial stress are still largely unknown and, if characterized, may suggest novel potential targets for the treatment of human mitochondria-associated, age-related disorders. Here we identify mitochondrial autophagy as an evolutionarily conserved response to frataxin silencing, and show for the first time that, similar to mammals, mitophagy is activated in C. elegans in response to mitochondrial stress in a pdr-1/Parkin-, pink-1/Pink-, and dct-1/Bnip3-dependent manner. The induction of mitophagy is part of a hypoxia-like, iron starvation response triggered upon frataxin depletion and causally involved in animal lifespan extension. We also identify non-overlapping hif-1 upstream (HIF-1-prolyl-hydroxylase) and downstream (globins) regulatory genes mediating lifespan extension upon frataxin and iron depletion. Our findings indicate that mitophagy induction is part of an adaptive iron starvation response induced as a protective mechanism against mitochondrial stress, thus suggesting novel potential therapeutic strategies for the treatment of mitochondrial-associated, age-related disorders.


Subject(s)
Caenorhabditis elegans/physiology , Iron Deficiencies , Mitophagy/drug effects , Anaerobiosis , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Fasting , Iron-Binding Proteins , Longevity/drug effects , Frataxin
SELECTION OF CITATIONS
SEARCH DETAIL