Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Mol Cell ; 83(22): 3953-3971, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37802077

ABSTRACT

tRNA function is based on unique structures that enable mRNA decoding using anticodon trinucleotides. These structures interact with specific aminoacyl-tRNA synthetases and ribosomes using 3D shape and sequence signatures. Beyond translation, tRNAs serve as versatile signaling molecules interacting with other RNAs and proteins. Through evolutionary processes, tRNA fragmentation emerges as not merely random degradation but an act of recreation, generating specific shorter molecules called tRNA-derived small RNAs (tsRNAs). These tsRNAs exploit their linear sequences and newly arranged 3D structures for unexpected biological functions, epitomizing the tRNA "renovatio" (from Latin, meaning renewal, renovation, and rebirth). Emerging methods to uncover full tRNA/tsRNA sequences and modifications, combined with techniques to study RNA structures and to integrate AI-powered predictions, will enable comprehensive investigations of tRNA fragmentation products and new interaction potentials in relation to their biological functions. We anticipate that these directions will herald a new era for understanding biological complexity and advancing pharmaceutical engineering.


Subject(s)
Amino Acyl-tRNA Synthetases , RNA, Transfer , RNA, Transfer/metabolism , Anticodon , Amino Acyl-tRNA Synthetases/metabolism , Ribosomes/metabolism , RNA, Messenger/genetics
2.
Nat Rev Mol Cell Biol ; 19(1): 45-58, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28875994

ABSTRACT

The discovery of the genetic code and tRNAs as decoders of the code transformed life science. However, after establishing the role of tRNAs in protein synthesis, the field moved to other parts of the RNA world. Now, tRNA research is blooming again, with demonstration of the involvement of tRNAs in various other pathways beyond translation and in adapting translation to environmental cues. These roles are linked to the presence of tRNA sequence variants known as isoacceptors and isodecoders, various tRNA base modifications, the versatility of protein binding partners and tRNA fragmentation events, all of which collectively create an incalculable complexity. This complexity provides a vast repertoire of tRNA species that can serve various functions in cellular homeostasis and in adaptation of cellular functions to changing environments, and it likely arose from the fundamental role of RNAs in early evolution.


Subject(s)
Mammals/genetics , Protein Biosynthesis/genetics , RNA, Transfer/genetics , Animals , Evolution, Molecular , Humans , Protein Binding/genetics
3.
Nucleic Acids Res ; 51(18): 10001-10010, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37638745

ABSTRACT

Through their aminoacylation reactions, aminoacyl tRNA-synthetases (aaRS) establish the rules of the genetic code throughout all of nature. During their long evolution in eukaryotes, additional domains and splice variants were added to what is commonly a homodimeric or monomeric structure. These changes confer orthogonal functions in cellular activities that have recently been uncovered. An unusual exception to the familiar architecture of aaRSs is the heterodimeric metazoan mitochondrial SerRS. In contrast to domain additions or alternative splicing, here we show that heterodimeric metazoan mitochondrial SerRS arose from its homodimeric ancestor not by domain additions, but rather by collapse of an entire domain (in one subunit) and an active site ablation (in the other). The collapse/ablation retains aminoacylation activity while creating a new surface, which is necessary for its orthogonal function. The results highlight a new paradigm for repurposing a member of the ancient tRNA synthetase family.


Subject(s)
Serine-tRNA Ligase , Animals , Amino Acyl-tRNA Synthetases/metabolism , Catalytic Domain , Serine-tRNA Ligase/chemistry , Serine-tRNA Ligase/metabolism
4.
Proc Natl Acad Sci U S A ; 119(48): e2212659119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36409883

ABSTRACT

Platelets play a role not only in hemostasis and thrombosis, but also in inflammation and innate immunity. We previously reported that an activated form of tyrosyl-tRNA synthetase (YRSACT) has an extratranslational activity that enhances megakaryopoiesis and platelet production in mice. Here, we report that YRSACT mimics inflammatory stress inducing a unique megakaryocyte (MK) population with stem cell (Sca1) and myeloid (F4/80) markers through a mechanism dependent on Toll-like receptor (TLR) activation and type I interferon (IFN-I) signaling. This mimicry of inflammatory stress by YRSACT was studied in mice infected by lymphocytic choriomeningitis virus (LCMV). Using Sca1/EGFP transgenic mice, we demonstrated that IFN-I induced by YRSACT or LCMV infection suppressed normal hematopoiesis while activating an alternative pathway of thrombopoiesis. Platelets of inflammatory origin (Sca1/EGFP+) were a relevant proportion of those circulating during recovery from thrombocytopenia. Analysis of these "inflammatory" MKs and platelets suggested their origin in myeloid/MK-biased hematopoietic stem cells (HSCs) that bypassed the classical MK-erythroid progenitor (MEP) pathway to replenish platelets and promote recovery from thrombocytopenia. Notably, inflammatory platelets displayed enhanced agonist-induced activation and procoagulant activities. Moreover, myeloid/MK-biased progenitors and MKs were mobilized from the bone marrow, as evidenced by their presence in the lung microvasculature within fibrin-containing microthrombi. Our results define the function of YRSACT in platelet generation and contribute to elucidate platelet alterations in number and function during viral infection.


Subject(s)
Spinocerebellar Ataxias , Thrombocytopenia , Thrombosis , Tyrosine-tRNA Ligase , Virus Diseases , Mice , Animals , Thrombopoiesis , Mice, Transgenic
5.
Nature ; 564(7736): E37, 2018 12.
Article in English | MEDLINE | ID: mdl-30459470

ABSTRACT

In Fig. 1b of this Article, a U was inadvertently inserted after G15 in the D loop. The original Article has not been corrected.

6.
Nature ; 557(7706): 510-515, 2018 05.
Article in English | MEDLINE | ID: mdl-29769718

ABSTRACT

Editing domains of aminoacyl tRNA synthetases correct tRNA charging errors to maintain translational fidelity. A mutation in the editing domain of alanyl tRNA synthetase (AlaRS) in Aars sti mutant mice results in an increase in the production of serine-mischarged tRNAAla and the degeneration of cerebellar Purkinje cells. Here, using positional cloning, we identified Ankrd16, a gene that acts epistatically with the Aars sti mutation to attenuate neurodegeneration. ANKRD16, a vertebrate-specific protein that contains ankyrin repeats, binds directly to the catalytic domain of AlaRS. Serine that is misactivated by AlaRS is captured by the lysine side chains of ANKRD16, which prevents the charging of serine adenylates to tRNAAla and precludes serine misincorporation in nascent peptides. The deletion of Ankrd16 in the brains of Aarssti/sti mice causes widespread protein aggregation and neuron loss. These results identify an amino-acid-accepting co-regulator of tRNA synthetase editing as a new layer of the machinery that is essential to the prevention of severe pathologies that arise from defects in editing.


Subject(s)
Alanine-tRNA Ligase/genetics , Alanine-tRNA Ligase/metabolism , Mutation , Protein Biosynthesis , Purkinje Cells/enzymology , Purkinje Cells/pathology , Alanine/metabolism , Alanine-tRNA Ligase/chemistry , Animals , Catalytic Domain , Cell Death , Female , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Binding , Purkinje Cells/metabolism , Serine/metabolism
7.
Nature ; 560(7720): E35, 2018 08.
Article in English | MEDLINE | ID: mdl-29925958

ABSTRACT

In the Fig. 3b western blot of this Article, 'Myc-AlaRS' in row one should have been 'Myc-AAD Aars', 'AlaRS' in row two should have been 'Aars' and 'ANKRD16' in row four should have been 'Ankrd16'. In Fig. 4f, 'ANKRD16' and 'ANKRD16(3xR)' should have been 'Ankrd16' and 'Ankrd163xR; and in Fig. 3c the position of the molecular mass markers had shifted. These figures have been corrected online, and see Supplementary Information to the accompanying Amendment for the original figure.

8.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753480

ABSTRACT

Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.


Subject(s)
Alanine-tRNA Ligase/metabolism , Charcot-Marie-Tooth Disease/genetics , Neuropilin-1/metabolism , Alanine-tRNA Ligase/chemistry , Alanine-tRNA Ligase/genetics , Aminoacylation/genetics , Cells, Cultured , Charcot-Marie-Tooth Disease/blood , Crystallography, X-Ray , Deuterium Exchange Measurement , Humans , Lymphocytes , Mutation , Neuropilin-1/genetics , Primary Cell Culture , Protein Binding/genetics , Protein Domains/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Scattering, Small Angle
9.
Mol Genet Metab ; 140(3): 107657, 2023 11.
Article in English | MEDLINE | ID: mdl-37523899

ABSTRACT

FARS2 encodes the mitochondrial phenylalanyl-tRNA synthetase (mtPheRS), which is essential for charging mitochondrial (mt-) tRNAPhe with phenylalanine for use in intramitochondrial translation. Many biallelic, pathogenic FARS2 variants have been described previously, which are mostly associated with two distinct clinical phenotypes; an early onset epileptic mitochondrial encephalomyopathy or a later onset spastic paraplegia. In this study, we report on a patient who presented at 3 weeks of age with tachypnoea and poor feeding, which progressed to severe metabolic decompensation with lactic acidosis and seizure activity followed by death at 9 weeks of age. Rapid trio whole exome sequencing identified compound heterozygous FARS2 variants including a pathogenic exon 2 deletion on one allele and a rare missense variant (c.593G > T, p.(Arg198Leu)) on the other allele, necessitating further work to aid variant classification. Assessment of patient fibroblasts demonstrated severely decreased steady-state levels of mtPheRS, but no obvious defect in any components of the oxidative phosphorylation system. To investigate the potential pathogenicity of the missense variant, we determined its high-resolution crystal structure, demonstrating a local structural destabilization in the catalytic domain. Moreover, the R198L mutation reduced the thermal stability and impaired the enzymatic activity of mtPheRS due to a lower binding affinity for tRNAPhe and a slower turnover rate. Together these data confirm the pathogenicity of this FARS2 variant in causing early-onset mitochondrial epilepsy.


Subject(s)
Epilepsy , Mitochondrial Diseases , Phenylalanine-tRNA Ligase , Humans , Infant , Infant, Newborn , Epilepsy/pathology , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mutation , Phenylalanine-tRNA Ligase/genetics , Phenylalanine-tRNA Ligase/chemistry , RNA, Transfer/genetics , RNA, Transfer, Phe/metabolism
10.
Nucleic Acids Res ; 49(7): 3603-3616, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33341895

ABSTRACT

During mRNA translation, tRNAs are charged by aminoacyl-tRNA synthetases and subsequently used by ribosomes. A multi-enzyme aminoacyl-tRNA synthetase complex (MSC) has been proposed to increase protein synthesis efficiency by passing charged tRNAs to ribosomes. An alternative function is that the MSC repurposes specific synthetases that are released from the MSC upon cues for functions independent of translation. To explore this, we generated mammalian cells in which arginyl-tRNA synthetase and/or glutaminyl-tRNA synthetase were absent from the MSC. Protein synthesis, under a variety of stress conditions, was unchanged. Most strikingly, levels of charged tRNAArg and tRNAGln remained unchanged and no ribosome pausing was observed at codons for arginine and glutamine. Thus, increasing or regulating protein synthesis efficiency is not dependent on arginyl-tRNA synthetase and glutaminyl-tRNA synthetase in the MSC. Alternatively, and consistent with previously reported ex-translational roles requiring changes in synthetase cellular localizations, our manipulations of the MSC visibly changed localization.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Protein Biosynthesis , RNA, Transfer, Arg/metabolism , RNA, Transfer, Gln/metabolism , Ribosomes/metabolism , Animals , Fibroblasts , HEK293 Cells , Humans , Mice
11.
Nucleic Acids Res ; 49(17): 10106-10119, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34390350

ABSTRACT

AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding ß-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and ß-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain ß-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.


Subject(s)
Catalytic Domain/genetics , Escherichia coli/genetics , Glycine-tRNA Ligase/genetics , RNA, Transfer, Gly/chemistry , Adenosine Triphosphate/metabolism , Crystallography, X-Ray , Glycine/chemistry , Models, Molecular , RNA, Transfer, Gly/genetics
12.
Nat Rev Mol Cell Biol ; 11(9): 668-74, 2010 09.
Article in English | MEDLINE | ID: mdl-20700144

ABSTRACT

Over the course of evolution, eukaryotic aminoacyl-tRNA synthetases (aaRSs) progressively incorporated domains and motifs that have no essential connection to aminoacylation reactions. Their accretive addition to virtually all aaRSs correlates with the progressive evolution and complexity of eukaryotes. Based on recent experimental findings focused on a few of these additions and analysis of the aaRS proteome, we propose that they are markers for aaRS-associated functions beyond translation.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Protein Biosynthesis , Amino Acyl-tRNA Synthetases/genetics , Animals , Eukaryota/enzymology , Eukaryota/genetics , Evolution, Molecular , Humans
13.
Proc Natl Acad Sci U S A ; 116(39): 19440-19448, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31501329

ABSTRACT

Aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) are the largest protein family causatively linked to neurodegenerative Charcot-Marie-Tooth (CMT) disease. Dominant mutations cause the disease, and studies of CMT disease-causing mutant glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase (TyrRS) showed their mutations create neomorphic structures consistent with a gain-of-function mechanism. In contrast, based on a haploid yeast model, loss of aminoacylation function was reported for CMT disease mutants in histidyl-tRNA synthetase (HisRS). However, neither that nor prior work of any CMT disease-causing aaRS investigated the aminoacylation status of tRNAs in the cellular milieu of actual patients. Using an assay that interrogated aminoacylation levels in patient cells, we investigated a HisRS-linked CMT disease family with the most severe disease phenotype. Strikingly, no difference in charged tRNA levels between normal and diseased family members was found. In confirmation, recombinant versions of 4 other HisRS CMT disease-causing mutants showed no correlation between activity loss in vitro and severity of phenotype in vivo. Indeed, a mutation having the most detrimental impact on activity was associated with a mild disease phenotype. In further work, using 3 independent biophysical analyses, structural opening (relaxation) of mutant HisRSs at the dimer interface best correlated with disease severity. In fact, the HisRS mutation in the severely afflicted patient family caused the largest degree of structural relaxation. These data suggest that HisRS-linked CMT disease arises from open conformation-induced mechanisms distinct from loss of aminoacylation.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Charcot-Marie-Tooth Disease/genetics , Histidine-tRNA Ligase/genetics , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/metabolism , Aminoacylation/genetics , Axons , Charcot-Marie-Tooth Disease/metabolism , Gain of Function Mutation/genetics , Histidine-tRNA Ligase/metabolism , Humans , Mutation , RNA, Transfer/genetics , RNA, Transfer/metabolism , Structure-Activity Relationship , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism
14.
Am J Hum Genet ; 103(1): 100-114, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29979980

ABSTRACT

The tRNA synthetases catalyze the first step of protein synthesis and have increasingly been studied for their nuclear and extra-cellular ex-translational activities. Human genetic conditions such as Charcot-Marie-Tooth have been attributed to dominant gain-of-function mutations in some tRNA synthetases. Unlike dominantly inherited gain-of-function mutations, recessive loss-of-function mutations can potentially elucidate ex-translational activities. We present here five individuals from four families with a multi-system disease associated with bi-allelic mutations in FARSB that encodes the beta chain of the alpha2beta2 phenylalanine-tRNA synthetase (FARS). Collectively, the mutant alleles encompass a 5'-splice junction non-coding variant (SJV) and six missense variants, one of which is shared by unrelated individuals. The clinical condition is characterized by interstitial lung disease, cerebral aneurysms and brain calcifications, and cirrhosis. For the SJV, we confirmed exon skipping leading to a frameshift associated with noncatalytic activity. While the bi-allelic combination of the SJV with a p.Arg305Gln missense mutation in two individuals led to severe disease, cells from neither the asymptomatic heterozygous carriers nor the compound heterozygous affected individual had any defect in protein synthesis. These results support a disease mechanism independent of tRNA synthetase activities in protein translation and suggest that this FARS activity is essential for normal function in multiple organs.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Lung Diseases/genetics , Mutation/genetics , Adolescent , Alleles , Charcot-Marie-Tooth Disease/genetics , Child, Preschool , Female , Genes, Recessive/genetics , Heterozygote , Humans , Infant , Male , Protein Biosynthesis/genetics
15.
Nature ; 519(7543): 370-3, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25533949

ABSTRACT

Resveratrol is reported to extend lifespan and provide cardio-neuro-protective, anti-diabetic, and anti-cancer effects by initiating a stress response that induces survival genes. Because human tyrosyl transfer-RNA (tRNA) synthetase (TyrRS) translocates to the nucleus under stress conditions, we considered the possibility that the tyrosine-like phenolic ring of resveratrol might fit into the active site pocket to effect a nuclear role. Here we present a 2.1 Å co-crystal structure of resveratrol bound to the active site of TyrRS. Resveratrol nullifies the catalytic activity and redirects TyrRS to a nuclear function, stimulating NAD(+)-dependent auto-poly-ADP-ribosylation of poly(ADP-ribose) polymerase 1 (PARP1). Downstream activation of key stress signalling pathways are causally connected to TyrRS-PARP1-NAD(+) collaboration. This collaboration is also demonstrated in the mouse, and is specifically blocked in vivo by a resveratrol-displacing tyrosyl adenylate analogue. In contrast to functionally diverse tRNA synthetase catalytic nulls created by alternative splicing events that ablate active sites, here a non-spliced TyrRS catalytic null reveals a new PARP1- and NAD(+)-dependent dimension to the physiological mechanism of resveratrol.


Subject(s)
Poly(ADP-ribose) Polymerases/metabolism , Stilbenes/pharmacology , Tyrosine-tRNA Ligase/antagonists & inhibitors , Tyrosine-tRNA Ligase/metabolism , Alternative Splicing , Animals , Biocatalysis/drug effects , Catalytic Domain , Cell Nucleus/enzymology , Crystallography, X-Ray , Culture Media, Serum-Free , Enzyme Activation/drug effects , Humans , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Poly (ADP-Ribose) Polymerase-1 , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Protein Conformation , Resveratrol , Signal Transduction/drug effects , Sirtuin 1/metabolism , Sirtuins/metabolism , Stilbenes/antagonists & inhibitors , Stilbenes/chemistry , Tyrosine-tRNA Ligase/chemistry
16.
Mol Cell ; 49(1): 30-42, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23159739

ABSTRACT

Lysyl-tRNA synthetase (LysRS), a component of the translation apparatus, is released from the cytoplasmic multi-tRNA synthetase complex (MSC) to activate the transcription factor MITF in stimulated mast cells through undefined mechanisms. Here we show that Ser207 phosphorylation provokes a new conformer of LysRS that inactivates its translational function but activates its transcriptional function. The crystal structure of an MSC subcomplex established that LysRS is held in the MSC by binding to the N terminus of the scaffold protein p38/AIMP2. Phosphorylation-created steric clashes at the LysRS domain interface disrupt its binding grooves for p38/AIMP2, releasing LysRS and provoking its nuclear translocation. This alteration also exposes the C-terminal domain of LysRS to bind to MITF and triggers LysRS-directed production of the second messenger Ap(4)A that activates MITF. Thus our results establish that a single conformational change triggered by phosphorylation leads to multiple effects driving an exclusive switch of LysRS function from translation to transcription.


Subject(s)
Lysine-tRNA Ligase/chemistry , Protein Biosynthesis , Transcription, Genetic , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Line , Conserved Sequence , Crystallography, X-Ray , Dinucleoside Phosphates/metabolism , Humans , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/metabolism , Mast Cells/enzymology , Mast Cells/metabolism , Microphthalmia-Associated Transcription Factor , Models, Molecular , Molecular Sequence Data , Nuclear Proteins , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Rats , Second Messenger Systems
17.
Proc Natl Acad Sci U S A ; 115(29): 7527-7532, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967150

ABSTRACT

Throughout three domains of life, alanyl-tRNA synthetases (AlaRSs) recognize a G3:U70 base pair in the acceptor stem of tRNAAla as the major identity determinant of tRNAAla The crystal structure of the archaeon Archaeoglobus fulgidus AlaRS in complex with tRNAAla provided the basis for G3:U70 recognition with residues (Asp and Asn) that are conserved in the three domains [Naganuma M, et al. (2014) Nature 510:507-511]. The recognition mode is unprecedented, with specific accommodation of the dyad asymmetry of the G:U wobble pair and exclusion of the dyad symmetry of a Watson-Crick pair. With this conserved mode, specificity is based more on "fit" than on direct recognition of specific atomic groups. Here, we show that, in contrast to the archaeal complex, the Escherichia coli enzyme uses direct positive (energetically favorable) minor groove recognition of the unpaired 2-amino of G3 by Asp and repulsion of a competing base pair by Asn. Strikingly, mutations that disrupted positive recognition by the E. coli enzyme had little or no effect on G:U recognition by the human enzyme. Alternatively, Homo sapiens AlaRS selects G:U without positive recognition and uses Asp instead to repel a competitor. Thus, the widely conserved Asp-plus-Asn architecture of AlaRSs can select G:U in a straightforward (bacteria) or two different unconventional (eukarya/archaea) ways. The adoption of different modes for recognition of a widely conserved G:U pair in alanine tRNAs suggests an early and insistent role for G:U in the development of the genetic code.


Subject(s)
Alanine-tRNA Ligase/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Models, Molecular , Nucleotide Motifs , RNA, Transfer/chemistry , Alanine-tRNA Ligase/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Humans , Mutation , RNA, Transfer/genetics
18.
Proc Natl Acad Sci U S A ; 115(35): E8228-E8235, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30104364

ABSTRACT

New mechanisms behind blood cell formation continue to be uncovered, with therapeutic approaches for hematological diseases being of great interest. Here we report an enzyme in protein synthesis, known for cell-based activities beyond translation, is a factor inducing megakaryocyte-biased hematopoiesis, most likely under stress conditions. We show an activated form of tyrosyl-tRNA synthetase (YRSACT), prepared either by rationally designed mutagenesis or alternative splicing, induces expansion of a previously unrecognized high-ploidy Sca-1+ megakaryocyte population capable of accelerating platelet replenishment after depletion. Moreover, YRSACT targets monocytic cells to induce secretion of transacting cytokines that enhance megakaryocyte expansion stimulating the Toll-like receptor/MyD88 pathway. Platelet replenishment by YRSACT is independent of thrombopoietin (TPO), as evidenced by expansion of the megakaryocytes from induced pluripotent stem cell-derived hematopoietic stem cells from a patient deficient in TPO signaling. We suggest megakaryocyte-biased hematopoiesis induced by YRSACT offers new approaches for treating thrombocytopenia, boosting yields from cell-culture production of platelet concentrates for transfusion, and bridging therapy for hematopoietic stem cell transplantation.


Subject(s)
Blood Platelets/metabolism , Hematopoiesis , Megakaryocytes/metabolism , Polyploidy , Thrombocytopenia/metabolism , Tyrosine-tRNA Ligase/metabolism , Blood Platelets/pathology , Cell Culture Techniques , Cells, Cultured , Female , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Megakaryocytes/pathology , Signal Transduction , Thrombocytopenia/pathology , Thrombopoietin/metabolism
19.
Nature ; 510(7506): 507-11, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24919148

ABSTRACT

Ligation of tRNAs with their cognate amino acids, by aminoacyl-tRNA synthetases, establishes the genetic code. Throughout evolution, tRNA(Ala) selection by alanyl-tRNA synthetase (AlaRS) has depended predominantly on a single wobble base pair in the acceptor stem, G3•U70, mainly on the kcat level. Here we report the crystal structures of an archaeal AlaRS in complex with tRNA(Ala) with G3•U70 and its A3•U70 variant. AlaRS interacts with both the minor- and the major-groove sides of G3•U70, widening the major groove. The geometry difference between G3•U70 and A3•U70 is transmitted along the acceptor stem to the 3'-CCA region. Thus, the 3'-CCA region of tRNA(Ala) with G3•U70 is oriented to the reactive route that reaches the active site, whereas that of the A3•U70 variant is folded back into the non-reactive route. This novel mechanism enables the single wobble pair to dominantly determine the specificity of tRNA selection, by an approximate 100-fold difference in kcat.


Subject(s)
Alanine-tRNA Ligase/chemistry , Archaeoglobus fulgidus/enzymology , Archaeoglobus fulgidus/genetics , Base Pairing , RNA, Transfer, Ala/chemistry , RNA, Transfer, Ala/genetics , Transfer RNA Aminoacylation , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Base Sequence , Catalytic Domain , Crystallography, X-Ray , Kinetics , Models, Molecular , Substrate Specificity
20.
Nature ; 494(7435): 121-4, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23263184

ABSTRACT

Febrifugine is the active component of the Chinese herb Chang Shan (Dichroa febrifuga Lour.), which has been used for treating malaria-induced fever for about 2,000 years. Halofuginone (HF), the halogenated derivative of febrifugine, has been tested in clinical trials for potential therapeutic applications in cancer and fibrotic disease. Recently, HF was reported to inhibit T(H)17 cell differentiation by activating the amino acid response pathway, through inhibiting human prolyl-transfer RNA synthetase (ProRS) to cause intracellular accumulation of uncharged tRNA. Curiously, inhibition requires the presence of unhydrolysed ATP. Here we report an unusual 2.0 Å structure showing that ATP directly locks onto and orients two parts of HF onto human ProRS, so that one part of HF mimics bound proline and the other mimics the 3' end of bound tRNA. Thus, HF is a new type of ATP-dependent inhibitor that simultaneously occupies two different substrate binding sites on ProRS. Moreover, our structure indicates a possible similar mechanism of action for febrifugine in malaria treatment. Finally, the elucidation here of a two-site modular targeting activity of HF raises the possibility that substrate-directed capture of similar inhibitors might be a general mechanism that could be applied to other synthetases.


Subject(s)
Adenosine Triphosphate/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Piperidines/chemistry , Piperidines/metabolism , Quinazolinones/chemistry , Quinazolinones/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/pharmacology , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Antimalarials/chemistry , Antimalarials/pharmacology , Binding Sites , Crystallography, X-Ray , Herbal Medicine , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Medicine, Chinese Traditional , Models, Molecular , Piperidines/pharmacology , Proline/chemistry , Proline/metabolism , Quinazolines/chemistry , Quinazolines/pharmacology , Quinazolinones/pharmacology , RNA, Transfer/chemistry , RNA, Transfer/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL