Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Rep ; 13(1): 17389, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833364

ABSTRACT

Several dog skeletons were excavated at the Roman town of Augusta Raurica and at the military camp of Vindonissa, located in the northern Alpine region of Switzerland (Germania Superior). The relationships between them and the people, the nature of their lives, and the circumstances of their deaths are unclear. In order to gain insight into this dog population, we collected 31 dogs deposited almost simultaneously in two wells (second half of the third century CE), three dogs from burial contexts (70-200 CE and third to fifth century CE) at Augusta Raurica, and two dogs from burial contexts at Vindonissa (ca. first century CE). We detected a mixed population of young and adult dogs including small, medium and large sized individuals. Three small dogs had conspicuous phenotypes: abnormally short legs, and one with a brachycephalic skull. Stable isotope analysis of a subset of the dogs showed that their diets were omnivorous with a substantial input of animal proteins and little variation, except one with a particularly low δ15N value, indicating a diet low in animal proteins. Partial mitochondrial DNA sequences from 25 dogs revealed eight haplotypes within canine haplogroup A (11 dogs; 44%; 5 haplotypes), C (8 dogs; 32%; 1 haplotype), D (4 dogs, 16%; 1 haplotype) and B (2 dogs, 8%; 1 haplotype). Based on shotgun sequencing, four Roman mitogenomes were assembled, representing sub-haplogroups A1b3, A1b2 and C2. No canine pathogens were identified, weakening the assumption of infectious disease as a cause for dog disposal. The genetic and morphological diversity observed in dogs of Augusta Raurica and Vindonissa is similar to modern dog diversity.


Subject(s)
DNA, Mitochondrial , Genetic Variation , Adult , Dogs , Humans , Animals , Sequence Analysis, DNA , Switzerland , DNA, Mitochondrial/genetics , Diet , Haplotypes , Phylogeny
2.
PLoS Genet ; 3(11): e195, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17997609

ABSTRACT

White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from approximately 50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the approximately 82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.


Subject(s)
Alleles , Genes, Dominant , Genetic Heterogeneity , Horses/genetics , Proto-Oncogene Proteins c-kit/genetics , Animals , Base Sequence , Blotting, Western , Breeding , Cytosine , DNA Mutational Analysis , Genome , Guanine , Molecular Sequence Data , Phenotype , Polymorphism, Genetic , Skin/metabolism
3.
Trends Plant Sci ; 24(8): 770-782, 2019 08.
Article in English | MEDLINE | ID: mdl-31296442

ABSTRACT

The apple is an iconic tree and a major fruit crop worldwide. It is also a model species for the study of the evolutionary processes and genomic basis underlying the domestication of clonally propagated perennial crops. Multidisciplinary approaches from across Eurasia have documented the pace and process of cultivation of this remarkable crop. While population genetics and genomics have revealed the overall domestication history of apple across Eurasia, untangling the evolutionary processes involved, archeobotany has helped to document the transition from gathering and using apples to the practice of cultivation. Further studies integrating archeogenetic and archeogenomic approaches will bring new insights about key traits involved in apple domestication. Such knowledge has potential to boost innovation in present-day apple breeding.


Subject(s)
Malus , Breeding , Crops, Agricultural , Domestication , Fruit
5.
PLoS One ; 13(1): e0189278, 2018.
Article in English | MEDLINE | ID: mdl-29304165

ABSTRACT

In north-eastern France, red deer (Cervus elaphus L.) populations were rebuilt from a few hundred individuals, which have subsisted in remote valleys of the Vosges mountains, and to a lesser extent from individuals escaped from private enclosures; at present times, this species occupies large areas, mainly in the Vosges Mountains. In this study, we examined the population dynamics of red deer in the Vosges Mountains using ancient and contemporary mitochondrial DNA (mtDNA) from 140 samples (23 ancient + 117 modern) spanning the last 7'000 years. In addition, we reconstructed the feeding habits and the habitat of red deer since the beginning of agriculture applying isotopic analyses in order to establish a basis for current environmental management strategies. We show that past and present red deer in the Vosges Mountains belong to mtDNA haplogroup A, suggesting that they originated from the Iberian refugium after the last glacial maximum (LGM). Palaeogenetic analysis of ancient bone material revealed the presence of two distinct haplotypes with different temporal distributions. Individuals belonging to the two haplotype groups apparently occupied two different habitats over at least 7'000 years. AM6 correlates with an ecological type that feeds in densely forested mountain landscapes, while AM235 correlates with feeding in lowland landscapes, composed of a mixture of meadows and riverine, herb-rich woodlands. Our results suggest that red deer of north-eastern France was able to adapt, over the long term, to these different habitat types, possibly due to efficient ethological barriers. Modern haplotype patterns support the historical record that red deer has been exposed to strong anthropogenic influences as a major game species.


Subject(s)
Deer/genetics , Agriculture/history , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/isolation & purification , Deer/classification , Diet/history , Ecosystem , France , Genetic Variation , Haplotypes , History, 20th Century , History, 21st Century , History, Ancient , History, Medieval , Phylogeography , Population Dynamics/history
6.
PLoS One ; 12(5): e0177458, 2017.
Article in English | MEDLINE | ID: mdl-28542345

ABSTRACT

On large geographical scales, changes in animal population distribution and abundance are driven by environmental change due to climatic and anthropogenic processes. However, so far, little is known about population dynamics on a regional scale. We have investigated 92 archaeological horse remains from nine sites mainly adjacent to the Swiss Jura Mountains dating from c. 41,000-5,000 years BP. The time frame includes major environmental turning points such as the Last Glacial Maximum (LGM), followed by steppe vegetation, afforestation and initial re-opening of the landscape by human agricultural activities. To investigate matrilinear population dynamics, we assembled 240 base pairs of the mitochondrial d-loop. FST values indicate large genetic differentiation of the horse populations that were present during and directly after the LGM. After the retreat of the ice, a highly diverse population expanded as demonstrated by significantly negative results for Tajima's D, Fu's FS and mismatch analyses. At the same time, a different development took place in Asia where populations declined after the LGM. This first comprehensive investigation of wild horse remains on a regional scale reveals a discontinuous colonisation of succeeding populations, a pattern that diverges from the larger Eurasian trend.


Subject(s)
DNA, Mitochondrial/genetics , DNA, Mitochondrial/history , Genetic Variation , Horses/genetics , Animals , Animals, Wild/classification , Animals, Wild/genetics , Asia , Climate Change/history , Ecosystem , Fossils , Haplotypes , History, Ancient , Horses/classification , Phylogeny , Population Dynamics/history , Population Dynamics/trends , Switzerland
7.
Theor Appl Genet ; 104(2-3): 329-337, 2002 Feb.
Article in English | MEDLINE | ID: mdl-12582705

ABSTRACT

A partial promoter region of the high-molecular weight (HMW) glutenin genes was studied in two wheat specimens, a 300 year-old spelt ( Triticum spelta L.) and an approximately 250 year-old bread wheat ( Triticum aestivum L.) from Switzerland. Sequences were compared to a recent Swiss landrace T. spelta'Oberkulmer.' The alleles from the historical bread wheat were most similar to those of modern T. aestivumcultivars, whereas in the historical and the recent spelt specific alleles were detected. Pairwise genetic distances up to 0.03 within 200 bp from the HMW Glu-A1-2, Glu-B1-1 and Glu-B1-2 alleles in spelt to the most-similar alleles from bread wheat suggest a polyphyletic origin. The spelt Glu-B1-1 allele, which was unlike the corresponding alleles in bread wheat, was closer related to an allele found in tetraploid wheat cultivars. The results are discussed in context of the origin of European spelt.

8.
Sci Rep ; 4: 5798, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-25052335

ABSTRACT

Domestication is an ongoing process continuously changing the lives of animals and humans and the environment. For the majority of European cattle (Bos taurus) genetic and archaeozoological evidence support initial domestication ca. 11'000 BP in the Near East from few founder aurochs (Bos primigenius) belonging to the mitochondrial DNA T macro-haplogroup. Gene flow between wild European aurochs of P haplogroup and domestic cattle of T haplogroup, coexisting over thousands of years, appears to have been sporadic. We report archaeozoological and ancient DNA evidence for the incorporation of wild stock into a domestic cattle herd from a Neolithic lake-dwelling in Switzerland. A complete metacarpus of a small and compact adult bovid is morphologically and genetically a female. With withers height of ca. 112 cm, it is comparable in size with small domestic cattle from contemporaneous sites in the area. The bone is directly dated to 3360-3090 cal BC and associated to the Horgen culture, a period of the secondary products revolution. The cow possessed a novel mtDNA P haplotype variant of the European aurochs. We argue this is either a single event or, based on osteological characteristics of the Horgen cattle, a rare instance of intentional breeding with female aurochs.


Subject(s)
Archaeology , Breeding , Cattle/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Genome, Mitochondrial , Haplotypes/genetics , Animals , Europe , Female , History, Ancient , Phylogeny , Polymerase Chain Reaction
9.
Ann Anat ; 194(1): 157-62, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-21501956

ABSTRACT

Wild apples (Malus sp.) have been a major food source in the northern Alpine region since prehistory and their use is well understood. The onset of deliberate fruit tree growing in the area is, however, less clear. It is generally assumed that horticulture was practised in Roman times, but it might be even earlier. In the archaeological record seed testa and pericarp remains are particularly frequent at sites with waterlogged preservation such as lakeshore settlements or wells, pits and ditches, but the distinction between wild and domestic plants is not morphologically possible. With waterlogged remains being one main source of information about past fruit cultivation, we have tested the feasibility of analysing ancient DNA from waterlogged preserved bulk samples of testa fragments. We studied apple seeds from three Neolithic and three Roman sites with waterlogged preservation in the Alpine foreland. Chloroplast markers failed in all samples, but nuclear ITS1 (internal transcribed spacer region 1) of the ribosomal DNA was successfully typed in two Roman samples from the site Oedenburg/Biesheim-Kunheim (Haut-Rhin, F). The retrieved ITS1 sequences are identical to each other and are shared with wild Malus sylvestris and Malus sieversii, and with domestic apple cultivars, supporting the potential of using waterlogged remains for identifying the genetic status of apple diachronically.


Subject(s)
DNA, Plant/chemistry , Malus/chemistry , Trees/physiology , Agriculture/history , Biomarkers/analysis , Cell Nucleus/chemistry , Chloroplasts/chemistry , Chloroplasts/genetics , Cloning, Molecular , DNA, Intergenic/chemistry , DNA, Intergenic/genetics , Endoribonucleases/genetics , Europe , France , History, Ancient , Mutation/physiology , Nucleotidyltransferases/genetics , Paleontology , Polymerase Chain Reaction , Ribosomes/chemistry , Seeds/chemistry
10.
Proc Natl Acad Sci U S A ; 104(39): 15276-81, 2007 Sep 25.
Article in English | MEDLINE | ID: mdl-17855556

ABSTRACT

The Neolithic Revolution began 11,000 years ago in the Near East and preceded a westward migration into Europe of distinctive cultural groups and their agricultural economies, including domesticated animals and plants. Despite decades of research, no consensus has emerged about the extent of admixture between the indigenous and exotic populations or the degree to which the appearance of specific components of the "Neolithic cultural package" in Europe reflects truly independent development. Here, through the use of mitochondrial DNA from 323 modern and 221 ancient pig specimens sampled across western Eurasia, we demonstrate that domestic pigs of Near Eastern ancestry were definitely introduced into Europe during the Neolithic (potentially along two separate routes), reaching the Paris Basin by at least the early 4th millennium B.C. Local European wild boar were also domesticated by this time, possibly as a direct consequence of the introduction of Near Eastern domestic pigs. Once domesticated, European pigs rapidly replaced the introduced domestic pigs of Near Eastern origin throughout Europe. Domestic pigs formed a key component of the Neolithic Revolution, and this detailed genetic record of their origins reveals a complex set of interactions and processes during the spread of early farmers into Europe.


Subject(s)
DNA, Mitochondrial/genetics , Agriculture , Animals , Asia , Biometry , Europe , Geography , History, Ancient , Markov Chains , Molecular Sequence Data , Monte Carlo Method , Regression Analysis , Sequence Analysis, DNA , Sus scrofa , Swine
SELECTION OF CITATIONS
SEARCH DETAIL