Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35037016

ABSTRACT

Health outcomes are frequently shaped by difficult to dissect inter-relationships between biological, behavioral, social and environmental factors. DNA methylation patterns reflect such multivariate intersections, providing a rich source of novel biomarkers and insight into disease etiologies. Recent advances in whole-genome bisulfite sequencing enable investigation of DNA methylation over all genomic CpGs, but existing bioinformatic approaches lack accessible system-level tools. Here, we develop the R package Comethyl, for weighted gene correlation network analysis of user-defined genomic regions that generates modules of comethylated regions, which are then tested for correlations with multivariate sample traits. First, regions are defined by CpG genomic location or regulatory annotation and filtered based on CpG count, sequencing depth and variability. Next, correlation networks are used to find modules of interconnected nodes using methylation values within the selected regions. Each module containing multiple comethylated regions is reduced in complexity to a single eigennode value, which is then tested for correlations with experimental metadata. Comethyl has the ability to cover the noncoding regulatory regions of the genome with high relevance to interpretation of genome-wide association studies and integration with other types of epigenomic data. We demonstrate the utility of Comethyl on a dataset of male cord blood samples from newborns later diagnosed with autism spectrum disorder (ASD) versus typical development. Comethyl successfully identified an ASD-associated module containing regions mapped to genes enriched for brain glial functions. Comethyl is expected to be useful in uncovering the multivariate nature of health disparities for a variety of common disorders. Comethyl is available at github.com/cemordaunt/comethyl with complete documentation and example analyses.


Subject(s)
Autism Spectrum Disorder , Epigenome , Autism Spectrum Disorder/genetics , CpG Islands , DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study , Humans , Infant, Newborn , Male
2.
Epidemiology ; 35(4): 527-541, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38912713

ABSTRACT

BACKGROUND: Maternal folic acid intake has been associated with decreased risk for neurodevelopmental disorders including autism spectrum disorder (ASD). Genetic differences in folate metabolism could explain some inconsistencies. To our knowledge, newborn folate concentrations remain unexamined. METHODS: We measured folate in archived newborn dried blood spots of children from the CHARGE (Childhood Autism Risks from Genetics and the Environment) case-control study who were clinically confirmed at 24-60 months to have ASD (n = 380), developmental delay (n = 128), or typical development (n = 247). We quantified monthly folic acid intake from maternally-reported supplements and cereals consumed during pregnancy and 3 months prior. We assessed associations of newborn folate with maternal folic acid intake and with ASD or developmental delay using regression. We stratified estimates across maternal and child MTHFR genotypes. RESULTS: Among typically developing children, maternal folic acid intake in prepregnancy and each pregnancy month and prepregnancy prenatal vitamin intake were positively associated with newborn folate. Among children with ASD, prenatal vitamin intake in pregnancy months 2-9 was positively associated with newborn folate. Among children with developmental delay, maternal folic acid and prenatal vitamins during the first pregnancy month were positively associated with neonatal folate. Associations differed by MTHFR genotype. Overall, neonatal folate was not associated with ASD or developmental delay, though we observed associations with ASD in children with the MTHFR 677 TT genotype (odds ratio: 1.76, 95% CI = 1.19, 2.62; P for interaction = 0.08). CONCLUSION: Maternal prenatal folic acid intake was associated with neonatal folate at different times across neurodevelopmental groups. Neonatal folate was not associated with reduced ASD risk. MTHFR genotypes modulated these relationships.


Subject(s)
Autism Spectrum Disorder , Developmental Disabilities , Folic Acid , Methylenetetrahydrofolate Reductase (NADPH2) , Self Report , Humans , Folic Acid/blood , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/blood , Female , Case-Control Studies , Infant, Newborn , Male , Pregnancy , Developmental Disabilities/epidemiology , Developmental Disabilities/blood , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Child, Preschool , Dried Blood Spot Testing , Adult , Dietary Supplements , Genotype
3.
Metabolomics ; 20(1): 16, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267770

ABSTRACT

INTRODUCTION: Meta-analyses across diverse independent studies provide improved confidence in results. However, within the context of metabolomic epidemiology, meta-analysis investigations are complicated by differences in study design, data acquisition, and other factors that may impact reproducibility. OBJECTIVE: The objective of this study was to identify maternal blood metabolites during pregnancy (> 24 gestational weeks) related to offspring body mass index (BMI) at age two years through a meta-analysis framework. METHODS: We used adjusted linear regression summary statistics from three cohorts (total N = 1012 mother-child pairs) participating in the NIH Environmental influences on Child Health Outcomes (ECHO) Program. We applied a random-effects meta-analysis framework to regression results and adjusted by false discovery rate (FDR) using the Benjamini-Hochberg procedure. RESULTS: Only 20 metabolites were detected in all three cohorts, with an additional 127 metabolites detected in two of three cohorts. Of these 147, 6 maternal metabolites were nominally associated (P < 0.05) with offspring BMI z-scores at age 2 years in a meta-analytic framework including at least two studies: arabinose (Coefmeta = 0.40 [95% CI 0.10,0.70], Pmeta = 9.7 × 10-3), guanidinoacetate (Coefmeta = - 0.28 [- 0.54, - 0.02], Pmeta = 0.033), 3-ureidopropionate (Coefmeta = 0.22 [0.017,0.41], Pmeta = 0.033), 1-methylhistidine (Coefmeta = - 0.18 [- 0.33, - 0.04], Pmeta = 0.011), serine (Coefmeta = - 0.18 [- 0.36, - 0.01], Pmeta = 0.034), and lysine (Coefmeta = - 0.16 [- 0.32, - 0.01], Pmeta = 0.044). No associations were robust to multiple testing correction. CONCLUSIONS: Despite including three cohorts with large sample sizes (N > 100), we failed to identify significant metabolite associations after FDR correction. Our investigation demonstrates difficulties in applying epidemiological meta-analysis to clinical metabolomics, emphasizes challenges to reproducibility, and highlights the need for standardized best practices in metabolomic epidemiology.


Subject(s)
Lysine , Metabolomics , Child , Female , Pregnancy , Humans , Child, Preschool , Body Mass Index , Reproducibility of Results , Linear Models
4.
Int Arch Allergy Immunol ; 185(6): 600-616, 2024.
Article in English | MEDLINE | ID: mdl-38452750

ABSTRACT

BACKGROUND: Wildfires are a global concern due to their wide-ranging environmental, economic, and public health impacts. Climate change contributes to an increase in the frequency and intensity of wildfires making smoke exposure a more significant and recurring health concern for individuals with airway diseases. Some of the most prominent effects of wildfire smoke exposure are asthma exacerbations and allergic airway sensitization. Likely due to the delayed recognition of its health impacts in comparison with cigarette smoke and industrial or traffic-related air pollution, research on the composition, the mechanisms of toxicity, and the cellular/molecular pathways involved is poor or non-existent. SUMMARY: This review discusses potential underlying pathological mechanisms of wildfire-smoke-related allergic airway disease and asthma. We focused on major gaps in understanding the role of wildfire smoke composition in the development of airway disease and the known and potential mechanisms involving cellular and molecular players of oxidative injury at the epithelial barrier in airway inflammation. We examine how PM2.5, VOCs, O3, endotoxin, microbes, and toxic gases may affect oxidative stress and inflammation in the respiratory mucosal barrier. We discuss the role of AhR in mediating smoke's effects in alarmin release and IL-17A production and how glucocorticoid responsiveness may be impaired by IL-17A-induced signaling and epigenetic changes leading to steroid-resistant severe airway inflammation. KEY MESSAGE: Effective mitigation of wildfire-smoke-related respiratory health effects would require comprehensive research efforts aimed at a better understanding of the immune regulatory effects of wildfire smoke in respiratory health and disease.


Subject(s)
Climate Change , Smoke , Wildfires , Humans , Smoke/adverse effects , Animals , Oxidative Stress , Environmental Exposure/adverse effects , Inflammation/immunology , Asthma/immunology , Asthma/etiology , Air Pollutants/adverse effects , Air Pollutants/immunology
5.
Int Arch Allergy Immunol ; 185(6): 617-630, 2024.
Article in English | MEDLINE | ID: mdl-38527432

ABSTRACT

BACKGROUND: Population growth and climate change have led to more frequent and larger wildfires, increasing the exposure of individuals to wildfire smoke. Notably, asthma exacerbations and allergic airway sensitization are prominent outcomes of such exposure. SUMMARY: Key research questions relate to determining the precise impact on individuals with asthma, including the severity, duration, and long-term consequences of exacerbations. Identifying specific risk factors contributing to vulnerability, such as age, genetics, comorbidities, or environmental factors, is crucial. Additionally, reliable biomarkers for predicting severe exacerbations need exploration. Understanding the long-term health effects of repeated wildfire smoke exposures in individuals with asthma and addressing healthcare disparities are important research areas. KEY MESSAGES: This review discusses the need for comprehensive research efforts to better grasp wildfire smoke-induced respiratory health, particularly in vulnerable populations such as farmworkers, firefighters, pregnant women, children, the elderly, and marginalized communities. Effective mitigation would require addressing the current limitations we face by supporting research aimed at a better understanding of wildfire smoke-induced airway disease.


Subject(s)
Climate Change , Smoke , Wildfires , Humans , Smoke/adverse effects , Asthma/etiology , Asthma/immunology , Asthma/epidemiology , Asthma/diagnosis , Environmental Exposure/adverse effects
6.
Mol Psychiatry ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899042

ABSTRACT

Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.

7.
Environ Sci Technol ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335968

ABSTRACT

Young children may experience higher per- and polyfluoroalkyl substances (PFAS) exposure than adults due to breastfeeding, higher dust ingestion rates, and frequent hand-to-mouth activities. We explored temporal trends and determinants of child serum PFAS concentrations and their correlations with paired maternal PFAS concentrations. From 2009 to 2017, we collected one blood sample from each of 541 children aged 2-5 years participating in the Childhood Autism Risks from Genetics and Environment (CHARGE) study and quantified 14 PFAS in serum. For nine frequently detected PFAS (>65% of samples), we performed multiple regression adjusting for potential determinants to estimate mean percent concentration changes. For a subset of 327 children, we also quantified nine PFAS in their mother's serum collected at the same visit and computed Spearman correlation coefficients (rsp) between maternal and child PFAS concentrations. During 2009-2017, child serum concentrations of all nine PFAS decreased by 6-25% annually. Several PFAS concentrations were higher among non-Hispanic white children and those with highly educated parents. Most maternal and child PFAS concentrations were moderately correlated (rsp = 0.13-0.39), with a strong correlation for N-methyl perfluorooctane sulfonamido acetic acid (rsp = 0.68). Breastfeeding duration appeared to contribute to higher child and lower maternal PFAS concentrations, resulting in relatively weak correlations between maternal and child PFAS concentrations for samples collected in early childhood. Considering that more than half of our study children had neurodevelopmental concerns, the generalizability of our findings might be limited.

8.
Environ Res ; 251(Pt 1): 118511, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38387490

ABSTRACT

BACKGROUND: Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may adversely affect child behaviors; however, findings of epidemiologic studies are inconsistent. We examined prenatal PFAS exposure in association with child behavioral problems. METHODS: Participants were 177 mother-child pairs from MARBLES (Markers of Autism Risk in Babies - Learning Early Signs), a cohort with elevated familial likelihood of autism spectrum disorder (ASD). We quantified nine PFAS in maternal serum (1-3 samples per mother) collected from the 1st to 3rd trimesters of pregnancy. Child behavioral problems were assessed at 3 years of age using the Child Behavior Checklist (CBCL), developed to test for various behavioral problems of children. We examined associations of the CBCL scores with individual PFAS concentrations and with their mixture using negative binomial regression and weighted quantile sum regression models. RESULTS: Higher prenatal perfluorononanoate (PFNA) concentrations were associated with higher scores of externalizing problems [ß = 0.16, 95% CI (0.01, 0.32)] and aggressive behavior [ß = 0.17 (0.01, 0.32)]. Higher PFNA, perfluorooctane sulfonate (PFOS), and perfluorodecanoate (PFDA) were associated with higher scores of sleep problems [ß = 0.34 (0.15, 0.54) for PFNA, ß = 0.20 (0.02, 0.37) for PFOS, and ß = 0.19 (0.00, 0.37) for PFDA]. No significant associations observed for typically developing children, whereas PFOS, PFNA, and PFDA were associated with several behavioral problems among children diagnosed with ASD or other neurodevelopmental concerns. Exposure to a mixture of PFAS was associated with higher scores of sleep problems and aggressive behavior, mostly contributed by PFNA and PFDA. CONCLUSIONS: Our study showed that prenatal exposure to some PFAS could increase child behavioral problems at 3 years of age. However, our results should be interpreted with caution because we relied on data from a cohort with increased familial likelihood of ASD and thereby had more behavioral problems.


Subject(s)
Fluorocarbons , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Fluorocarbons/toxicity , Fluorocarbons/blood , Child, Preschool , Male , Environmental Pollutants/toxicity , Environmental Pollutants/blood , Adult , Problem Behavior , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/epidemiology , Maternal Exposure/adverse effects , Cohort Studies , Child Behavior/drug effects , Child Behavior Disorders/chemically induced , Child Behavior Disorders/epidemiology
9.
Environ Res ; 242: 117624, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37956751

ABSTRACT

Prenatal and early postnatal air pollution exposures have been shown to be associated with autism spectrum disorder (ASD) risk but results regarding specific air pollutants and exposure timing are mixed and no study has investigated the effects of combined exposure to multiple air pollutants using a mixtures approach. We aimed to evaluate prenatal and early life multipollutant mixtures for the drivers of associations of air pollution with ASD. This study examined 484 typically developing (TD) and 660 ASD children from the CHARGE case-control study. Daily air concentrations for NO2, O3, ultrafine (PM0.1), fine (PM0.1-2.5), and coarse (PM2.5-10) particles were predicted from chemical transport models with statistical bias adjustment based on ground-based monitors. Daily averages were calculated for each exposure period (pre-pregnancy, each trimester of pregnancy, first and second year of life) between 2000 and 2016. Air pollution variables were natural log-transformed and then standardized. Individual and joint effects of pollutant exposure with ASD, and potential interactions, were evaluated for each period using hierarchical Bayesian Kernel Machine Regression (BKMR) models, with three groups: PM size fractions (PM0.1, PM0.1-2.5, PM2.5-10), NO2, and O3. In BKMR models, the PM group was associated with ASD in year 2 (group posterior inclusion probability (gPIP) = 0.75), and marginally associated in year 1 (gPIP = 0.497). PM2.5-10 appeared to drive the association (conditional PIP (cPIP) = 0.64) in year 1, while PM0.1 appeared to drive the association in year 2 (cPIP = 0.76), with both showing a moderately strong increased risk. Pre-pregnancy O3 showed a slight J-shaped risk of ASD (gPIP = 0.55). No associations were observed for exposures during pregnancy. Pre-pregnancy O3 and year 2 p.m.0.1 exposures appear to be associated with an increased risk of ASD. Future research should examine ultrafine particulate matter in relation to ASD.


Subject(s)
Air Pollutants , Air Pollution , Autism Spectrum Disorder , Inositol Phosphates , Prostaglandins E , Child , Pregnancy , Female , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Case-Control Studies , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/epidemiology , Bayes Theorem , Nitrogen Dioxide/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Mercaptopurine , Environmental Exposure/analysis
10.
Environ Res ; 252(Pt 1): 118854, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574983

ABSTRACT

BACKGROUND: This study sought to investigate the association of prenatal and early life exposure to a mixture of air pollutants on cognitive and adaptive outcomes separately in children with or without autism spectrum disorder (ASD). METHODS: Utilizing data from the CHARGE case-control study (birth years: 2000-2016), we predicted daily air concentrations of NO2, O3, and particulate matter <0.1 µm (PM0.1), between 0.1 and 2.5 µm (PM0.1-2.5), and between 2.5 and 10 µm (PM2.5-10) using chemical transport models with ground-based monitor adjustments. Exposures were evaluated for pre-pregnancy, each trimester, and the first two years of life. Individual and combined effects of pollutants were assessed with Vineland Adaptive Behavior Scales (VABS) and Mullen Scales of Early Learning (MSEL), separately for children with ASD (n = 660) and children without ASD (typically developing (TD) and developmentally delayed (DD) combined; n = 753) using hierarchical Bayesian Kernel Machine Regression (BKMR) models with three groups: PM size fractions (PM0.1, PM0.1-2.5, PM2.5-10), NO2, and O3. RESULTS: Pre-pregnancy Ozone was strongly negatively associated with all scores in the non-ASD group (group posterior inclusion probability (gPIP) = 0.83-1.00). The PM group during year 2 was also strongly negatively associated with all scores in the non-ASD group (gPIP = 0.59-0.93), with PM0.1 driving the group association (conditional PIP (cPIP) = 0.73-0.96). Weaker and less consistent associations were observed between PM0.1-2.5 during pre-pregnancy and ozone during year 1 and VABS scores in the ASD group. CONCLUSIONS: These findings prompt further investigation into ozone and ultrafine PM as potential environmental risk factors for neurodevelopment.


Subject(s)
Air Pollutants , Autism Spectrum Disorder , Ozone , Particulate Matter , Prenatal Exposure Delayed Effects , Humans , Ozone/analysis , Ozone/adverse effects , Ozone/toxicity , Particulate Matter/analysis , Female , Pregnancy , Air Pollutants/analysis , Air Pollutants/toxicity , Child, Preschool , Case-Control Studies , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/epidemiology , Male , Prenatal Exposure Delayed Effects/chemically induced , Cognition/drug effects , Air Pollution/adverse effects , Maternal Exposure/adverse effects , Environmental Exposure/adverse effects
11.
Environ Health ; 23(1): 27, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486233

ABSTRACT

BACKGROUND: A growing body of literature investigated childhood exposure to environmental chemicals in association with attention-deficit/hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay (DD), and typical development (TD). METHODS: A total of 549 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study were administered the Aberrant Behavior Checklist (ABC). This study focused on the ADHD/noncompliance subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in > 70% samples were used to investigate their associations with ADHD symptoms. Negative binomial regression was used for single-chemical analysis, and weighted quantile sum regression with repeated holdout validation was applied for mixture analysis for each chemical class and all chemicals. The mixture analyses were further stratified by diagnostic group. RESULTS: A phthalate metabolite mixture was associated with higher ADHD/noncompliance scores (median count ratio [CR] = 1.10; 2.5th, 97.5th percentile: 1.00, 1.21), especially hyperactivity/impulsivity (median CR = 1.09; 2.5th, 97.5th percentile: 1.00, 1.25). The possible contributors to these mixture effects were di-2-ethylhexyl phthalate (DEHP) metabolites and mono-2-heptyl phthalate (MHPP). These associations were likely driven by children with ASD as these were observed among children with ASD, but not among TD or those with DD. Additionally, among children with ASD, a mixture of all chemicals was associated with ADHD/noncompliance and hyperactivity/impulsivity, and possible contributors were 3,4-dihydroxy benzoic acid, DEHP metabolites, MHPP, mono-n-butyl phthalate, and cadmium. CONCLUSIONS: Early childhood exposure to a phthalate mixture was associated with ADHD symptoms, particularly among children with ASD. While the diverse diagnostic profiles limited generalizability, our findings suggest a potential link between phthalate exposure and the comorbidity of ASD and ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Diethylhexyl Phthalate , Environmental Pollutants , Pesticides , Phthalic Acids , Trace Elements , Child , Humans , Child, Preschool , Attention Deficit Disorder with Hyperactivity/chemically induced , Attention Deficit Disorder with Hyperactivity/epidemiology , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/epidemiology , Parabens/analysis , Phenols/urine , Case-Control Studies , Phthalic Acids/urine , Organophosphates/adverse effects , Pesticides/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Pollutants/urine
12.
Environ Health ; 23(1): 62, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970053

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a prevalent and heterogeneous neurodevelopmental disorder. Risk is attributed to genetic and prenatal environmental factors, though the environmental agents are incompletely characterized. METHODS: In Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies Learning Early Signs (MARBLES), two pregnancy cohorts of siblings of children with ASD, urinary metals concentrations during two pregnancy time periods (< 28 weeks and ≥ 28 weeks of gestation) were measured using inductively coupled plasma mass spectrometry. At age three, clinicians assessed ASD with DSM-5 criteria. In an exposure-wide association framework, using multivariable log binomial regression, we examined each metal for association with ASD status, adjusting for gestational age at urine sampling, child sex, age at pregnancy, race/ethnicity and education. We meta-analyzed across the two cohorts. RESULTS: In EARLI (n = 170) 17% of children were diagnosed with ASD, and 44% were classified as having non-neurotypical development (Non-TD). In MARBLES (n = 231), 21% were diagnosed with ASD, and 14% classified as Non-TD. During the first and second trimester period (< 28 weeks), having cadmium concentration over the level of detection was associated with 1.69 (1.08, 2.64) times higher risk of ASD, and 1.29 (0.95, 1.75)times higher risk of Non-TD. A doubling of first and second trimester cesium concentration was marginally associated with 1.89 (0.94, 3.80) times higher risk of ASD, and a doubling of third trimester cesium with 1.69 (0.97, 2.95) times higher risk of ASD. CONCLUSION: Exposure in utero to elevated levels of cadmium and cesium, as measured in urine collected during pregnancy, was associated with increased risk of developing ASD.


Subject(s)
Autism Spectrum Disorder , Metals, Heavy , Prenatal Exposure Delayed Effects , Siblings , Humans , Autism Spectrum Disorder/urine , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/chemically induced , Female , Pregnancy , Metals, Heavy/urine , Metals, Heavy/adverse effects , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/chemically induced , Child, Preschool , Longitudinal Studies , Male , Maternal Exposure/adverse effects , Environmental Pollutants/urine , Environmental Pollutants/adverse effects , Cohort Studies
13.
Article in English | MEDLINE | ID: mdl-38658455

ABSTRACT

This study aimed to compare the breastfeeding (BF) duration of the younger siblings of children with ASD in an enriched-likelihood cohort for autism spectrum disorder (ASD), and to determine whether longer BF duration was associated with differences in neurodevelopmental outcomes in this cohort. Information on BF practices was collected via surveys in the MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) study. Developmental evaluations, including the Mullen Scales of Early Learning and the Autism Diagnostic Observation Schedule, were conducted by expert clinicians. Participants' neurodevelopmental outcome was classified by an algorithm into three groups: typical development, ASD, and non-typical development. The median duration of BF was 10.70 months (interquartile range of 12.07 months). There were no significant differences in the distribution of duration of BF among the three neurodevelopmental outcome categories. Children in this enriched-likelihood cohort who were breastfed for > 12 months had significantly higher scores on cognitive testing compared to those who were breastfed for 0-3 months. There was no significant difference in ASD symptomatology or ASD risk based on BF duration.

14.
J Nutr ; 153(5): 1502-1511, 2023 05.
Article in English | MEDLINE | ID: mdl-37147034

ABSTRACT

BACKGROUND: Vitamin D deficiency is common in pregnancy. Vitamin D plays an important role in the developing brain, and deficiency may impair childhood behavioral development. OBJECTIVES: This study examined the relationship between gestational 25(OH)D concentrations and childhood behavior in the Environmental influences on Child Health Outcomes (ECHO) Program. METHODS: Mother-child dyads from ECHO cohorts with data available on prenatal (first trimester through delivery) or cord blood 25(OH)D and childhood behavioral outcomes were included. Behavior was assessed using the Strengths and Difficulties Questionnaire or the Child Behavior Checklist, and data were harmonized using a crosswalk conversion. Linear mixed-effects models examined associations of 25(OH)D with total, internalizing, and externalizing problem scores while adjusting for important confounders, including age, sex, and socioeconomic and lifestyle factors. The effect modification by maternal race was also assessed. RESULTS: Early (1.5-5 y) and middle childhood (6-13 y) outcomes were examined in 1688 and 1480 dyads, respectively. Approximately 45% were vitamin D deficient [25(OH)D < 20 ng/mL], with Black women overrepresented in this group. In fully adjusted models, 25(OH)D concentrations in prenatal or cord blood were negatively associated with externalizing behavior T-scores in middle childhood [-0.73 (95% CI: -1.36, -0.10) per 10 ng/mL increase in gestational 25(OH)D]. We found no evidence of effect modification by race. In a sensitivity analysis restricted to those with 25(OH)D assessed in prenatal maternal samples, 25(OH)D was negatively associated with externalizing and total behavioral problems in early childhood. CONCLUSIONS: This study confirmed a high prevalence of vitamin D deficiency in pregnancy, particularly among Black women, and revealed evidence of an association between lower gestational 25(OH)D and childhood behavioral problems. Associations were more apparent in analyses restricted to prenatal rather than cord blood samples. Interventions to correct vitamin D deficiency during pregnancy should be explored as a strategy to improve childhood behavioral outcomes.


Subject(s)
Problem Behavior , Vitamin D Deficiency , Child , Pregnancy , Humans , Female , Child, Preschool , Vitamin D , Child Development , Outcome Assessment, Health Care
15.
Environ Res ; 220: 115227, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36608759

ABSTRACT

BACKGROUND: Gestational exposure to polychlorinated biphenyls (PCBs) has been associated with elevated risk for neurodevelopmental disorders. Placental epigenetics may serve as a potential mechanism of risk or marker of altered placental function. Prior studies have associated differential placental DNA methylation with maternal PCB exposure or with increased risk of autism spectrum disorder (ASD). However, sequencing-based placental methylomes have not previously been tested for simultaneous associations with maternal PCB levels and child neurodevelopmental outcomes. OBJECTIVES: We aimed to identify placental DNA methylation patterns associated with maternal PCB levels and child neurodevelopmental outcomes in the high-risk ASD MARBLES cohort. METHODS: We measured 209 PCB congeners in 104 maternal serum samples collected at delivery. We identified networks of DNA methylation from 147 placenta samples using the Comethyl R package, which performs weighted gene correlation network analysis for whole genome bisulfite sequencing data. We tested placental DNA methylation modules for association with maternal serum PCB levels, child neurodevelopment, and other participant traits. RESULTS: PCBs 153 + 168, 170, 180 + 193, and 187 were detected in over 50% of maternal serum samples and were highly correlated with one another. Consistent with previous findings, maternal age was the strongest predictor of serum PCB levels, alongside year of sample collection, pre-pregnancy BMI, and polyunsaturated fatty acid levels. Twenty seven modules of placental DNA methylation were identified, including five which significantly correlated with one or more PCBs, and four which correlated with child neurodevelopment. Two modules associated with maternal PCB levels as well as child neurodevelopment, and mapped to CSMD1 and AUTS2, genes previously implicated in ASD and identified as differentially methylated regions in mouse brain and placenta following gestational PCB exposure. CONCLUSIONS: Placental DNA co-methylation modules were associated with maternal PCBs and child neurodevelopment. Methylation of CSMD1 and AUTS2 could be markers of altered placental function and/or ASD risk following maternal PCB exposure.


Subject(s)
Autism Spectrum Disorder , Polychlorinated Biphenyls , Animals , Mice , Humans , Child , Female , Pregnancy , Polychlorinated Biphenyls/analysis , Placenta/chemistry , DNA Methylation , Maternal Exposure/adverse effects
16.
Environ Res ; 229: 115978, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37116678

ABSTRACT

BACKGROUND: Literature suggests that maternal exposure to persistent organic pollutants (POPs) may influence child neurodevelopment. Evidence linking prenatal POPs and autism spectrum disorder has been inconclusive and few studies have examined the mixture effect of the POPs on autism-related traits. OBJECTIVE: To evaluate the associations between prenatal exposure to a mixture of POPs and autism-related traits in children from the Early Autism Risk Longitudinal Investigation study. METHODS: Maternal serum concentrations of 17 POPs (11 polychlorinated biphenyls [PCBs], 4 polybrominated diphenyls [PBDEs], and 2 persistent pesticides) in 154 samples collected during pregnancy were included in this analysis. We examined the independent associations of the natural log-transformed POPs with social, cognitive, and behavioral traits at 36 months of age, including Social Responsiveness Scale (SRS), Mullen Scales of Early Learning-Early Learning Composite (MSEL-ELC), and Vineland Adaptive Behavior Scales (VABS) scores, using linear regression models. We applied Bayesian kernel machine regression and quantile g-computation to examine the joint effect and interactions of the POPs. RESULTS: Higher ln-PBDE47 was associated with greater deficits in social reciprocity (higher SRS score) (ß = 6.39, 95% CI: 1.12, 11.65) whereas higher ln-p,p'-DDE was associated with lower social deficits (ß = -8.34, 95% CI: -15.32, -1.37). Positive associations were observed between PCB180 and PCB187 and cognitive (MSEL-ELC) scores (ß = 5.68, 95% CI: 0.18, 11.17; ß = 4.65, 95% CI: 0.14, 9.17, respectively). Adaptive functioning (VABS) scores were positively associated with PCB170, PCB180, PCB187, PCB196/203, and p,p'-DDE. In the mixture analyses, we did not observe an overall mixture effect of POPs on the quantitative traits. Potential interactions between PBDE99 and other PBDEs were identified in association with MSEL-ELC scores. CONCLUSIONS: We observed independent effects of PCB180, PCB187, PBDE47, and p,p' DDE with ASD-related quantitative traits and potential interactions between PBDEs. Our findings highlight the importance of assessing the effect of POPs as a mixture.


Subject(s)
Autism Spectrum Disorder , Environmental Pollutants , Polychlorinated Biphenyls , Prenatal Exposure Delayed Effects , Pregnancy , Child , Female , Humans , Child, Preschool , Persistent Organic Pollutants , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/epidemiology , Dichlorodiphenyl Dichloroethylene , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/epidemiology , Halogenated Diphenyl Ethers , Bayes Theorem , Polychlorinated Biphenyls/toxicity , Environmental Pollutants/toxicity , Sociological Factors , Cognition
17.
Int J Mol Sci ; 24(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37298406

ABSTRACT

Developmental disabilities are often associated with alterations in metabolism. However, it remains unknown how early these metabolic issues may arise. This study included a subset of children from the Markers of Autism Risks in Babies-Learning Early Signs (MARBLES) prospective cohort study. In this analysis, 109 urine samples collected at 3, 6, and/or 12 months of age from 70 children with a family history of ASD who went on to develop autism spectrum disorder (ASD n = 17), non-typical development (Non-TD n = 11), or typical development (TD n = 42) were investigated by nuclear magnetic resonance (NMR) spectroscopy to measure urinary metabolites. Multivariate principal component analysis and a generalized estimating equation were performed with the objective of exploring the associations between urinary metabolite levels in the first year of life and later adverse neurodevelopment. We found that children who were later diagnosed with ASD tended to have decreased urinary dimethylamine, guanidoacetate, hippurate, and serine, while children who were later diagnosed with Non-TD tended to have elevated urinary ethanolamine and hypoxanthine but lower methionine and homovanillate. Children later diagnosed with ASD or Non-TD both tended to have decreased urinary 3-aminoisobutyrate. Our results suggest subtle alterations in one-carbon metabolism, gut-microbial co-metabolism, and neurotransmitter precursors observed in the first year of life may be associated with later adverse neurodevelopment.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Child , Infant , Humans , Autism Spectrum Disorder/diagnosis , Prospective Studies , Metabolome , Calcium Carbonate
18.
Am J Epidemiol ; 191(8): 1407-1419, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35362025

ABSTRACT

Prior work has examined associations between cardiometabolic pregnancy complications and autism spectrum disorder (ASD) but not how these complications may relate to social communication traits more broadly. We addressed this question within the Environmental Influences on Child Health Outcomes program, with 6,778 participants from 40 cohorts conducted from 1998-2021 with information on ASD-related traits via the Social Responsiveness Scale. Four metabolic pregnancy complications were examined individually, and combined, in association with Social Responsiveness Scale scores, using crude and adjusted linear regression as well as quantile regression analyses. We also examined associations stratified by ASD diagnosis, and potential mediation by preterm birth and low birth weight, and modification by child sex and enriched risk of ASD. Increases in ASD-related traits were associated with obesity (ß = 4.64, 95% confidence interval: 3.27, 6.01) and gestational diabetes (ß = 5.21, 95% confidence interval: 2.41, 8.02), specifically, but not with hypertension or preeclampsia. Results among children without ASD were similar to main analyses, but weaker among ASD cases. There was not strong evidence for mediation or modification. Results suggest that common cardiometabolic pregnancy complications may influence child ASD-related traits, not only above a diagnostic threshold relevant to ASD but also across the population.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Cardiovascular Diseases , Diabetes, Gestational , Premature Birth , Autism Spectrum Disorder/epidemiology , Cardiovascular Diseases/complications , Child , Female , Humans , Infant, Newborn , Pregnancy
19.
Environ Sci Technol ; 56(16): 11449-11459, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35904360

ABSTRACT

Exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy and lactation is of increasing public health concern, but little is known about longitudinal changes in maternal PFAS concentrations from pregnancy to a few years postpartum. We quantified 11 PFAS in 251 serum samples prospectively collected from 42 Northern California mothers during the first, second, and third trimesters of pregnancy and at 3, 6, and 24 months after delivery over 2009-2017. We fit separate linear mixed models during pregnancy, early postpartum, and late postpartum to estimate percent changes of PFAS for each subperiod. Among five PFAS detected in more than 99% of samples, linear and branched perfluorooctanesulfonate (n- and Sm-PFOS), linear perfluorooctanoate (n-PFOA), and perfluorononanoate (PFNA) concentrations changed -4% to -3% per month during pregnancy. During early postpartum, perfluorohexanesulfonate (PFHxS) and n-PFOA concentrations changed -6% and -5%, respectively, per month, and Sm-PFOS and PFNA concentrations changed -1% per month. During late postpartum, n-PFOS, Sm-PFOS, and PFNA concentrations changed -1% per month. Breastfeeding duration was the primary determinant of n-PFOA and PFNA concentrations during late postpartum, showing negative associations. Our findings might be useful for reconstructing reliable prenatal or early life PFAS exposures for offspring.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Female , Humans , Lactation , Linear Models , Mothers , Pregnancy
20.
Environ Sci Technol ; 56(10): 6560-6573, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35536918

ABSTRACT

Prenatal chemical exposures can influence maternal and child health; however, few industrial chemicals are routinely biomonitored. We assessed an extensive panel of contemporary and emerging chemicals in 171 pregnant women across the United States (U.S.) and Puerto Rico in the Environmental influences on Child Health Outcomes (ECHO) Program. We simultaneously measured urinary concentrations of 89 analytes (103 total chemicals representing 73 parent compounds) in nine chemical groups: bactericides, benzophenones, bisphenols, fungicides and herbicides, insecticides, organophosphate esters (OPEs), parabens, phthalates/alternative plasticizers, and polycyclic aromatic hydrocarbons (PAHs). We estimated associations of creatinine-adjusted concentrations with sociodemographic and specimen characteristics. Among our diverse prenatal population (60% non-Hispanic Black or Hispanic), we detected 73 of 89 analytes in ≥1 participant and 36 in >50% of participants. Five analytes not currently included in the U.S. biomonitoring were detected in ≥90% of samples: benzophenone-1, thiamethoxam, mono-2-(propyl-6-carboxy-hexyl) phthalate, monocarboxy isooctyl phthalate, and monohydroxy-iso-decyl phthalate. Many analyte concentrations were higher among women of Hispanic ethnicity compared to those of non-Hispanic White women. Concentrations of certain chemicals decreased with the calendar year, whereas concentrations of their replacements increased. Our largest study to date identified widespread exposures to prevalent and understudied chemicals in a diverse sample of pregnant women in the U.S.


Subject(s)
Environmental Pollutants , Phthalic Acids , Child , Commerce , Environmental Exposure/analysis , Female , Humans , Outcome Assessment, Health Care , Plasticizers , Pregnancy , Pregnant Women , United States
SELECTION OF CITATIONS
SEARCH DETAIL