Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Cell ; 186(23): 5084-5097.e18, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37918394

ABSTRACT

Anti-NMDA receptor (NMDAR) autoantibodies cause NMDAR encephalitis, the most common autoimmune encephalitis, leading to psychosis, seizures, and autonomic dysfunction. Current treatments comprise broad immunosuppression or non-selective antibody removal. We developed NMDAR-specific chimeric autoantibody receptor (NMDAR-CAAR) T cells to selectively eliminate anti-NMDAR B cells and disease-causing autoantibodies. NMDAR-CAARs consist of an extracellular multi-subunit NMDAR autoantigen fused to intracellular 4-1BB/CD3ζ domains. NMDAR-CAAR T cells recognize a large panel of human patient-derived autoantibodies, release effector molecules, proliferate, and selectively kill antigen-specific target cell lines even in the presence of high autoantibody concentrations. In a passive transfer mouse model, NMDAR-CAAR T cells led to depletion of an anti-NMDAR B cell line and sustained reduction of autoantibody levels without notable off-target toxicity. Treatment of patients may reduce side effects, prevent relapses, and improve long-term prognosis. Our preclinical work paves the way for CAAR T cell phase I/II trials in NMDAR encephalitis and further autoantibody-mediated diseases.


Subject(s)
Autoantibodies , Encephalitis , T-Lymphocytes , Animals , Humans , Mice , Autoantibodies/metabolism , Encephalitis/metabolism , Encephalitis/therapy , Receptors, N-Methyl-D-Aspartate , Autoimmune Diseases , Disease Models, Animal
2.
Cell ; 183(4): 1058-1069.e19, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33058755

ABSTRACT

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from 10 COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb, CV07-209, neutralized authentic SARS-CoV-2 with an IC50 value of 3.1 ng/mL. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 Å revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2-neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss, and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Betacoronavirus/metabolism , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/therapeutic use , Antigen-Antibody Reactions , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cricetinae , Crystallography, X-Ray , Disease Models, Animal , Humans , Kinetics , Lung/immunology , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
3.
Physiol Rev ; 102(2): 653-688, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34254836

ABSTRACT

The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.


Subject(s)
Entorhinal Cortex/blood supply , Entorhinal Cortex/physiology , Hippocampus/blood supply , Pyramidal Cells/physiology , Action Potentials/physiology , Animals , Humans , Learning/physiology , Neurons/physiology
4.
Nat Methods ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811857

ABSTRACT

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

5.
Proc Natl Acad Sci U S A ; 121(6): e2312281120, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289953

ABSTRACT

The hippocampal formation is crucial for learning and memory, with submodule CA3 thought to be the substrate of pattern completion. However, the underlying synaptic and computational mechanisms of this network are not well understood. Here, we perform circuit reconstruction of a CA3 module using three dimensional (3D) electron microscopy data and combine this with functional connectivity recordings and computational simulations to determine possible CA3 network mechanisms. Direct measurements of connectivity schemes with both physiological measurements and structural 3D EM revealed a high connectivity rate, multi-fold higher than previously assumed. Mathematical modelling indicated that such CA3 networks can robustly generate pattern completion and replay memory sequences. In conclusion, our data demonstrate that the connectivity scheme of the hippocampal submodule is well suited for efficient memory storage and retrieval.


Subject(s)
Hippocampus , Learning , Hippocampus/physiology , Learning/physiology , Models, Theoretical , CA3 Region, Hippocampal/physiology
6.
PLoS Biol ; 20(3): e3001503, 2022 03.
Article in English | MEDLINE | ID: mdl-35312684

ABSTRACT

Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that-like SynCAM 1-MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses.


Subject(s)
Membrane Proteins , Post-Synaptic Density , Membrane Proteins/metabolism , Post-Synaptic Density/metabolism , Receptors, AMPA/metabolism , Receptors, GABA-A , Synapses/metabolism
7.
Proc Natl Acad Sci U S A ; 119(20): e2200931119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35561219

ABSTRACT

During periods of disengagement from the environment, transient population bursts, known as sharp wave ripples (SPW-Rs), occur sporadically. While numerous experiments have characterized the bidirectional relationship between SPW-Rs and activity in chosen brain areas, the topographic relationship between different segments of the hippocampus and brain-wide target areas has not been studied at high temporal and spatial resolution. Yet, such knowledge is necessary to infer the direction of communication. We analyzed two publicly available datasets with simultaneous high-density silicon probe recordings from across the mouse forebrain. We found that SPW-Rs coincide with a transient brain-wide increase in functional connectivity. In addition, we show that the diversity in SPW-R features, such as their incidence, magnitude, and intrahippocampal topography in the septotemporal axis, are correlated with slower excitability fluctuations in cortical and subcortical areas. Further, variations in SPW-R features correlated with the timing, sign, and magnitude of downstream responses with large-amplitude SPW-Rs followed by transient silence in extrahippocampal structures. Our findings expand on previous results and demonstrate that the activity patterns in extrahippocampal structures depend both on the intrahippocampal topographic origin and magnitude of hippocampal SPW-Rs.


Subject(s)
Brain Waves , Hippocampus , Animals , Datasets as Topic , Hippocampus/physiology , Mice
8.
PLoS Biol ; 19(6): e3001149, 2021 06.
Article in English | MEDLINE | ID: mdl-34153028

ABSTRACT

Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.


Subject(s)
Mossy Fibers, Hippocampal/metabolism , Presynaptic Terminals/metabolism , Animals , Colforsin/pharmacology , Glutamic Acid/metabolism , Male , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton , Mossy Fibers, Hippocampal/drug effects , Mossy Fibers, Hippocampal/ultrastructure , Neurotransmitter Agents/metabolism , Presynaptic Terminals/drug effects , Synaptic Vesicles/drug effects , Synaptic Vesicles/metabolism
9.
Cell ; 138(6): 1222-35, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19766573

ABSTRACT

Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.


Subject(s)
Proteoglycans/metabolism , Synapses/metabolism , Vesicular Transport Proteins/metabolism , Animals , Electroencephalography , Hippocampus/chemistry , Hippocampus/cytology , Hippocampus/metabolism , Lysophospholipids/metabolism , Mice , Mice, Knockout , Proteoglycans/analysis , Proteoglycans/genetics , Receptors, AMPA/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction , Vesicular Transport Proteins/analysis , Vesicular Transport Proteins/genetics
10.
Cereb Cortex ; 33(12): 7454-7467, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36977636

ABSTRACT

The Phospholipid Phosphatase Related 4 gene (PLPPR4,  *607813) encodes the Plasticity-Related-Gene-1 (PRG-1) protein. This cerebral synaptic transmembrane-protein modulates cortical excitatory transmission on glutamatergic neurons. In mice, homozygous Prg-1 deficiency causes juvenile epilepsy. Its epileptogenic potential in humans was unknown. Thus, we screened 18 patients with infantile epileptic spasms syndrome (IESS) and 98 patients with benign familial neonatal/infantile seizures (BFNS/BFIS) for the presence of PLPPR4 variants. A girl with IESS had inherited a PLPPR4-mutation (c.896C > G, NM_014839; p.T299S) from her father and an SCN1A-mutation from her mother (c.1622A > G, NM_006920; p.N541S). The PLPPR4-mutation was located in the third extracellular lysophosphatidic acid-interacting domain and in-utero electroporation (IUE) of the Prg-1p.T300S construct into neurons of Prg-1 knockout embryos demonstrated its inability to rescue the electrophysiological knockout phenotype. Electrophysiology on the recombinant SCN1Ap.N541S channel revealed partial loss-of-function. Another PLPPR4 variant (c.1034C > G, NM_014839; p.R345T) that was shown to result in a loss-of-function aggravated a BFNS/BFIS phenotype and also failed to suppress glutamatergic neurotransmission after IUE. The aggravating effect of Plppr4-haploinsufficiency on epileptogenesis was further verified using the kainate-model of epilepsy: double heterozygous Plppr4-/+|Scn1awt|p.R1648H mice exhibited higher seizure susceptibility than either wild-type, Plppr4-/+, or Scn1awt|p.R1648H littermates. Our study shows that a heterozygous PLPPR4 loss-of-function mutation may have a modifying effect on BFNS/BFIS and on SCN1A-related epilepsy in mice and humans.


Subject(s)
Epilepsy , Seizures , Animals , Female , Humans , Mice , Epilepsy/metabolism , Hippocampus/metabolism , Mutation/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Phenotype , Seizures/genetics , Seizures/metabolism
11.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33402532

ABSTRACT

Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv341E mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv341E mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv341E-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor-related pathways in brain development.


Subject(s)
Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Mannosyltransferases/metabolism , Abnormalities, Multiple/genetics , Amino Acid Sequence , Amino Acids/genetics , Animals , CRISPR-Cas Systems , Disease Models, Animal , Epilepsy/genetics , Glycosylphosphatidylinositols/deficiency , Hippocampus/metabolism , Intellectual Disability/genetics , Mannosyltransferases/physiology , Mice , Mice, Inbred C57BL , Mutation , Mutation, Missense , Phenotype , Protein Engineering/methods , Seizures/genetics , Seizures/physiopathology
12.
Glia ; 71(8): 1804-1829, 2023 08.
Article in English | MEDLINE | ID: mdl-37026600

ABSTRACT

Autoantibodies against the NR1 subunit of NMDA receptors (NMDARs) have been shown to promote crosslinking and internalization of bound receptors in NMDAR encephalitis (NMDARE). This internalization-mediated loss of NMDARs is thought to be the major mechanism leading to pathogenic outcomes in patients. However, the role of bound autoantibody in engaging the resident immune cells, microglia, remains poorly understood. Here, using a patient-derived monoclonal NR1 autoantibody (hNR1-mAb) and a co-culture system of microglia and neurons, we could show that hNR1-mAb bound to hippocampal neurons led to microglia-mediated removal of hNR1-mAb bound NMDARs. These complexes were found to accumulate inside endo-lysosomal compartments of microglia. Utilizing another patient isolated monoclonal autoantibody, against the α1-subunit of GABAA receptors (α1-GABAA -mAb), such removal of receptors was found to be specific to the antibody-bound receptor targets. Interestingly, along with receptor removal, we also observed a reduction in synapse number, more specifically in the numbers of post-synaptic proteins like PSD95 and Homer 1, when microglia were present in the culture. Importantly, mutations in the Fc region of hNR1-mAb, blocking its Fcγ receptor (FcγR) and complement binding, attenuated hNR1-mAb driven loss of NMDARs and synapses, indicating that microglia engagement by bound hNR1-mAb is critical for receptor and synapse loss. Our data argues for an active involvement of microglia in removal of NMDARs and other receptors in individuals with autoimmune encephalitis, thereby contributing to the etiology of these diseases.


Subject(s)
Autoantibodies , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Autoantibodies/metabolism , Coculture Techniques , Microglia/metabolism , Neurons/metabolism , gamma-Aminobutyric Acid/metabolism
13.
Physiol Rev ; 96(2): 647-93, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26960344

ABSTRACT

The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.


Subject(s)
Brain/physiology , Memory/physiology , Neuronal Plasticity , Animals , Epigenesis, Genetic , Humans , Sleep , Systems Biology
14.
Cereb Cortex ; 32(1): 76-92, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34289029

ABSTRACT

The parasubiculum (PaS) is located within the parahippocampal region, where it is thought to be involved in the processing of spatial navigational information. It contains a number of functionally specialized neuron types including grid cells, head direction cells, and border cells; and provides input into layer 2 of the medial entorhinal cortex where grid cells are abundantly located. The local circuitry within the PaS remains so far undefined but may provide clues as to the emergence of spatially tuned firing properties of neurons in this region. We used simultaneous patch-clamp recordings to determine the connectivity rates between the 3 major groups of neurons found in the PaS. We find high rates of interconnectivity between the pyramidal class and interneurons, as well as features of pyramid-to-pyramid interactions indicative of a nonrandom network. The microcircuit that we uncover shares both similarities and divergences to those from other parahippocampal regions also involved in spatial navigation.


Subject(s)
Entorhinal Cortex , Spatial Navigation , Action Potentials/physiology , Entorhinal Cortex/physiology , Interneurons/physiology , Neurons/physiology , Parahippocampal Gyrus/physiology , Spatial Navigation/physiology
15.
Int J Mol Sci ; 23(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36430563

ABSTRACT

The medial entorhinal cortex (mEC) plays a critical role for spatial navigation and memory. While many studies have investigated the principal neurons within the entorhinal cortex, much less is known about the inhibitory circuitries within this structure. Here, we describe for the first time in the mEC a subset of parvalbumin-positive (PV+) interneurons (INs)-stuttering cells (STUT)-with morphological, intrinsic electrophysiological, and synaptic properties distinct from fast-spiking PV+ INs. In contrast to the fast-spiking PV+ INs, the axon of the STUT INs also terminated in layer 3 and showed subthreshold membrane oscillations at gamma frequencies. Whereas the synaptic output of the STUT INs was only weakly reduced by a µ-opioid agonist, their inhibitory inputs were strongly suppressed. Given these properties, STUT are ideally suited to entrain gamma activity in the pyramidal cell population of the mEC. We propose that activation of the µ-opioid receptors decreases the GABA release from the PV+ INs onto the STUT, resulting in disinhibition of the STUT cell population and the consequent increase in network gamma power. We therefore suggest that the opioid system plays a critical role, mediated by STUT INs, in the neural signaling and oscillatory network activity within the mEC.


Subject(s)
Analgesics, Opioid , Entorhinal Cortex , Entorhinal Cortex/metabolism , Interneurons/metabolism , Pyramidal Cells/metabolism , Parvalbumins/metabolism
16.
J Neurosci ; 40(41): 7811-7836, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32913107

ABSTRACT

Sharp wave-ripple complexes (SWRs) are hippocampal network phenomena involved in memory consolidation. To date, the mechanisms underlying their occurrence remain obscure. Here, we show how the interactions between pyramidal cells, parvalbumin-positive (PV+) basket cells, and an unidentified class of anti-SWR interneurons can contribute to the initiation and termination of SWRs. Using a biophysically constrained model of a network of spiking neurons and a rate-model approximation, we demonstrate that SWRs emerge as a result of the competition between two interneuron populations and the resulting disinhibition of pyramidal cells. Our models explain how the activation of pyramidal cells or PV+ cells can trigger SWRs, as shown in vitro, and suggests that PV+ cell-mediated short-term synaptic depression influences the experimentally reported dynamics of SWR events. Furthermore, we predict that the silencing of anti-SWR interneurons can trigger SWRs. These results broaden our understanding of the microcircuits supporting the generation of memory-related network dynamics.SIGNIFICANCE STATEMENT The hippocampus is a part of the mammalian brain that is crucial for episodic memories. During periods of sleep and inactive waking, the extracellular activity of the hippocampus is dominated by sharp wave-ripple events (SWRs), which have been shown to be important for memory consolidation. The mechanisms regulating the emergence of these events are still unclear. We developed a computational model to study the emergence of SWRs and to explain the roles of different cell types in regulating them. The model accounts for several previously unexplained features of SWRs and thus advances the understanding of memory-related dynamics.


Subject(s)
Hippocampus/physiology , Inhibition, Psychological , Nerve Net/physiology , Algorithms , Animals , CA3 Region, Hippocampal/physiology , Computer Simulation , Electrophysiological Phenomena , Evoked Potentials , Interneurons/physiology , Memory Consolidation , Mice , Parvalbumins/metabolism , Pyramidal Cells/physiology
17.
J Neurosci ; 40(14): 2943-2959, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32122952

ABSTRACT

Piccolo, a presynaptic active zone protein, is best known for its role in the regulated assembly and function of vertebrate synapses. Genetic studies suggest a further link to several psychiatric disorders as well as Pontocerebellar Hypoplasia type 3 (PCH3). We have characterized recently generated Piccolo KO (Pclogt/gt ) rats. Analysis of rats of both sexes revealed a dramatic reduction in brain size compared with WT (Pclowt/wt ) animals, attributed to a decrease in the size of the cerebral cortical, cerebellar, and pontine regions. Analysis of the cerebellum and brainstem revealed a reduced granule cell layer and a reduction in size of pontine nuclei. Moreover, the maturation of mossy fiber afferents from pontine neurons and the expression of the α6 GABAA receptor subunit at the mossy fiber-granule cell synapse are perturbed, as well as the innervation of Purkinje cells by cerebellar climbing fibers. Ultrastructural and functional studies revealed a reduced size of mossy fiber boutons, with fewer synaptic vesicles and altered synaptic transmission. These data imply that Piccolo is required for the normal development, maturation, and function of neuronal networks formed between the brainstem and cerebellum. Consistently, behavioral studies demonstrated that adult Pclogt/gt rats display impaired motor coordination, despite adequate performance in tasks that reflect muscle strength and locomotion. Together, these data suggest that loss of Piccolo function in patients with PCH3 could be involved in many of the observed anatomical and behavioral symptoms, and that the further analysis of these animals could provide fundamental mechanistic insights into this devastating disorder.SIGNIFICANCE STATEMENT Pontocerebellar Hypoplasia Type 3 is a devastating developmental disorder associated with severe developmental delay, progressive microcephaly with brachycephaly, optic atrophy, seizures, and hypertonia with hyperreflexia. Recent genetic studies have identified non-sense mutations in the coding region of the PCLO gene, suggesting a functional link between this disorder and the presynaptic active zone. Our analysis of Piccolo KO rats supports this hypothesis, formally demonstrating that anatomical and behavioral phenotypes seen in patients with Pontocerebellar Hypoplasia Type 3 are also exhibited by these Piccolo deficient animals.


Subject(s)
Cerebellum/metabolism , Cerebellum/pathology , Cerebellum/physiopathology , Cytoskeletal Proteins/metabolism , Neuropeptides/metabolism , Olivopontocerebellar Atrophies , Animals , Disease Models, Animal , Female , Gene Knockout Techniques , Male , Phenotype , Rats
18.
J Neurochem ; 156(3): 324-336, 2021 02.
Article in English | MEDLINE | ID: mdl-33037623

ABSTRACT

Optogenetic manipulations have transformed neuroscience in recent years. While sophisticated tools now exist for controlling the firing patterns of neurons, it remains challenging to optogenetically define the plasticity state of individual synapses. A variety of synapses in the mammalian brain express presynaptic long-term potentiation (LTP) upon elevation of presynaptic cyclic adenosine monophosphate (cAMP), but the molecular expression mechanisms as well as the impact of presynaptic LTP on network activity and behavior are not fully understood. In order to establish optogenetic control of presynaptic cAMP levels and thereby presynaptic potentiation, we developed synaptoPAC, a presynaptically targeted version of the photoactivated adenylyl cyclase bPAC. In cultures of hippocampal granule cells of Wistar rats, activation of synaptoPAC with blue light increased action potential-evoked transmission, an effect not seen in hippocampal cultures of non-granule cells. In acute brain slices of C57BL/6N mice, synaptoPAC activation immediately triggered a strong presynaptic potentiation at mossy fiber synapses in CA3, but not at Schaffer collateral synapses in CA1. Following light-triggered potentiation, mossy fiber transmission decreased within 20 min, but remained enhanced still after 30 min. The optogenetic potentiation altered the short-term plasticity dynamics of release, reminiscent of presynaptic LTP. Our work establishes synaptoPAC as an optogenetic tool that enables acute light-controlled potentiation of transmitter release at specific synapses in the brain, facilitating studies of the role of presynaptic potentiation in network function and animal behavior in an unprecedented manner. Read the Editorial Highlight for this article on page 270.


Subject(s)
Brain/physiology , Long-Term Potentiation/physiology , Optogenetics/methods , Animals , Female , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar
19.
Ann Neurol ; 87(3): 405-418, 2020 03.
Article in English | MEDLINE | ID: mdl-31900946

ABSTRACT

OBJECTIVE: Leucine-rich glioma-inactivated 1 (LGI1) encephalitis is the second most common antibody-mediated encephalopathy, but insight into the intrathecal B-cell autoimmune response, including clonal relationships, isotype distribution, frequency, and pathogenic effects of single LGI1 antibodies, has remained limited. METHODS: We cloned, expressed, and tested antibodies from 90 antibody-secreting cells (ASCs) and B cells from the cerebrospinal fluid (CSF) of several patients with LGI1 encephalitis. RESULTS: Eighty-four percent of the ASCs and 21% of the memory B cells encoded LGI1-reactive antibodies, whereas reactivities to other brain epitopes were rare. All LGI1 antibodies were of IgG1, IgG2, or IgG4 isotype and had undergone affinity maturation. Seven of the overall 26 LGI1 antibodies efficiently blocked the interaction of LGI1 with its receptor ADAM22 in vitro, and their mean LGI1 signal on mouse brain sections was weak compared to the remaining, non-ADAM22-competing antibodies. Nevertheless, both types of LGI1 antibodies increased the intrinsic cellular excitability and glutamatergic synaptic transmission of hippocampal CA3 neurons in slice cultures. INTERPRETATION: Our data show that the patients' intrathecal B-cell autoimmune response is dominated by LGI1 antibodies and that LGI1 antibodies alone are sufficient to promote neuronal excitability, a basis of seizure generation. Fundamental differences in target specificity and antibody hypermutations compared to the CSF autoantibody repertoire in N-methyl-D-aspartate receptor encephalitis underline the clinical concept that autoimmune encephalitides are very distinct entities. Ann Neurol 2020;87:405-418.


Subject(s)
Antibodies, Monoclonal/pharmacology , Autoantibodies/pharmacology , Intracellular Signaling Peptides and Proteins/immunology , Neurons/physiology , ADAM Proteins/drug effects , Aged , Animals , Antibodies, Monoclonal/cerebrospinal fluid , Autoantibodies/cerebrospinal fluid , CA3 Region, Hippocampal/physiology , Cells, Cultured , Encephalitis/cerebrospinal fluid , Encephalitis/immunology , Female , Hashimoto Disease/cerebrospinal fluid , Hashimoto Disease/immunology , Humans , Immunoglobulin Isotypes , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Knockout , Middle Aged , Nerve Tissue Proteins/drug effects , Rats , Synaptic Transmission/drug effects
20.
J Neurosci ; 39(45): 8860-8876, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31548233

ABSTRACT

The parahippocampal region is thought to be critical for memory and spatial navigation. Within this region lies the parasubiculum, a small structure that exhibits strong theta modulation, contains functionally specialized cells, and projects to layer II of the medial entorhinal cortex (MEC). Thus, it is uniquely positioned to influence firing of spatially modulated cells in the MEC and play a key role in the internal representation of the external environment. However, the basic neuronal composition of the parasubiculum remains largely unknown, and its border with the MEC is often ambiguous. We combine electrophysiology and immunohistochemistry in adult mice (both sexes) to define first, the boundaries of the parasubiculum, and second, the major cell types found in this region. We find distinct differences in the colabeling of molecular markers between the parasubiculum and the MEC, allowing us to clearly separate the two structures. Moreover, we find distinct distribution patterns of different molecular markers within the parasubiculum, across both superficial-deep and DV axes. Using unsupervised cluster analysis, we find that neurons in the parasubiculum can be broadly separated into three clusters based on their electrophysiological properties, and that each cluster corresponds to a different molecular marker. We demonstrate that, while the parasubiculum aligns structurally to some to general cortical principals, it also shows divergent features in particular in contrast to the MEC. This work will form an important basis for future studies working to disentangle the circuitry underlying memory and spatial navigation functions of the parasubiculum.SIGNIFICANCE STATEMENT We identify the major neuron types in the parasubiculum using immunohistochemistry and electrophysiology, and determine their distribution throughout the parasubiculum. We find that the neuronal composition of the parasubiculum differs considerably compared with the neighboring medial entorhinal cortex. Both regions are involved in spatial navigation. Thus, our findings are of importance for unraveling the underlying circuitry of this process and for determining the role of the parasubiculum within this network.


Subject(s)
Hippocampus/cytology , Neurons/classification , Animals , Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Female , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Neuroanatomical Tract-Tracing Techniques , Neurons/physiology , Spatial Navigation
SELECTION OF CITATIONS
SEARCH DETAIL