ABSTRACT
5q-associated spinal muscular atrophy is a rare neuromuscular disorder with the leading symptom of a proximal muscle weakness. Three different drugs have been approved by the European Medicines Agency and Food and Drug Administration for the treatment of spinal muscular atrophy patients, however, long-term experience is still scarce. In contrast to clinical trial data with restricted patient populations and short observation periods, we report here real-world evidence on a broad spectrum of patients with early-onset spinal muscular atrophy treated with nusinersen focusing on effects regarding motor milestones, and respiratory and bulbar insufficiency during the first years of treatment. Within the SMArtCARE registry, all patients under treatment with nusinersen who never had the ability to sit independently before the start of treatment were identified for data analysis. The primary outcome of this analysis was the change in motor function evaluated with the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders and motor milestones considering World Health Organization criteria. Further, we evaluated data on the need for ventilator support and tube feeding, and mortality. In total, 143 patients with early-onset spinal muscular atrophy were included in the data analysis with a follow-up period of up to 38 months. We observed major improvements in motor function evaluated with the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders. Improvements were greater in children >2 years of age at start of treatment than in older children. 24.5% of children gained the ability to sit independently. Major improvements were observed during the first 14 months of treatment. The need for intermittent ventilator support and tube feeding increased despite treatment with nusinersen. Our findings confirm the increasing real-world evidence that treatment with nusinersen has a dramatic influence on disease progression and survival in patients with early-onset spinal muscular atrophy. Major improvements in motor function are seen in children younger than 2 years at the start of treatment. Bulbar and respiratory function needs to be closely monitored, as these functions do not improve equivalent to motor function.
Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Child , Infant , Humans , Spinal Muscular Atrophies of Childhood/drug therapy , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides/therapeutic use , Injections, SpinalABSTRACT
PurposeIn 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers-Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date.MethodsWe report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data.ResultsBased on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals.ConclusionOur data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS.
Subject(s)
Alleles , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Genetic Association Studies , Mutation , Peptidylprolyl Isomerase/genetics , Phenotype , Child , Child, Preschool , Chromosome Mapping , Cohort Studies , DNA Mutational Analysis , Female , Humans , Magnetic Resonance Angiography , Magnetic Resonance Imaging , MaleABSTRACT
Collagen VI-related myopathies are disorders of connective tissue presenting with an overlap phenotype combining clinical involvement from the muscle and from the connective tissue. Not all patients displaying related overlap phenotypes between muscle and connective tissue have mutations in collagen VI. Here, we report a homozygous recessive loss of function mutation and a de novo dominant mutation in collagen XII (COL12A1) as underlying a novel overlap syndrome involving muscle and connective tissue. Two siblings homozygous for a loss of function mutation showed widespread joint hyperlaxity combined with weakness precluding independent ambulation, while the patient with the de novo missense mutation was more mildly affected, showing improvement including the acquisition of walking. A mouse model with inactivation of the Col12a1 gene showed decreased grip strength, a delay in fiber-type transition and a deficiency in passive force generation while the muscle seems more resistant to eccentric contraction induced force drop, indicating a role for a matrix-based passive force-transducing elastic element in the generation of the weakness. This new muscle connective tissue overlap syndrome expands on the emerging importance of the muscle extracellular matrix in the pathogenesis of muscle disease.
Subject(s)
Collagen Type XII/genetics , Muscular Diseases/genetics , Mutation/genetics , Animals , Child, Preschool , Collagen Type VI/genetics , Collagen Type VI/metabolism , Collagen Type XII/metabolism , Disease Models, Animal , Humans , Infant , Male , Mice , Muscle, Skeletal/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathologyABSTRACT
We report on an autosomal-recessive variant of Ehlers-Danlos syndrome (EDS) characterized by severe muscle hypotonia at birth, progressive scoliosis, joint hypermobility, hyperelastic skin, myopathy, sensorineural hearing impairment, and normal pyridinoline excretion in urine. Clinically, the disorder shares many features with the kyphoscoliotic type of EDS (EDS VIA) and Ullrich congenital muscular dystrophy. Linkage analysis in a large Tyrolean kindred identified a homozygous frameshift mutation in FKBP14 in two affected individuals. Based on the cardinal clinical characteristics of the disorder, four additional individuals originating from different European countries were identified who carried either homozygous or compound heterozygous mutations in FKBP14. FKBP14 belongs to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases). ER-resident FKBPs have been suggested to act as folding catalysts by accelerating cis-trans isomerization of peptidyl-prolyl bonds and to act occasionally also as chaperones. We demonstrate that FKBP14 is localized in the endoplasmic reticulum (ER) and that deficiency of FKBP14 leads to enlarged ER cisterns in dermal fibroblasts in vivo. Furthermore, indirect immunofluorescence of FKBP14-deficient fibroblasts indicated an altered assembly of the extracellular matrix in vitro. These findings suggest that a disturbance of protein folding in the ER affecting one or more components of the extracellular matrix might cause the generalized connective tissue involvement in this disorder. FKBP14 mutation analysis should be considered in all individuals with apparent kyphoscoliotic type of EDS and normal urinary pyridinoline excretion, in particular in conjunction with sensorineural hearing impairment.
Subject(s)
Abnormalities, Multiple/genetics , Ehlers-Danlos Syndrome/genetics , Frameshift Mutation , Hearing Loss/genetics , Peptidylprolyl Isomerase/genetics , Adolescent , Amino Acids/urine , Child , Child, Preschool , Ehlers-Danlos Syndrome/urine , Endoplasmic Reticulum/genetics , Extracellular Matrix/genetics , Female , Fibroblasts/metabolism , Genetic Variation , Hearing Loss/urine , Heterozygote , Homozygote , Humans , Male , Middle Aged , Phenotype , Protein Folding , cis-trans-Isomerases/geneticsABSTRACT
Importance: There is increasing evidence that early diagnosis and treatment are key for outcomes in infants with spinal muscular atrophy (SMA), and newborn screening programs have been implemented to detect the disease before onset of symptoms. However, data from controlled studies that reliably confirm the benefits of newborn screening are lacking. Objective: To compare data obtained on patients with SMA diagnosed through newborn screening and those diagnosed after clinical symptom onset. Design, Setting, and Participants: This nonrandomized controlled trial used data from the SMARTCARE registry to evaluate all children born between January 2018 and September 2021 with genetically confirmed SMA and up to 3 SMN2 copies. The registry includes data from 70 participating centers in Germany, Austria, and Switzerland. Data analysis was performed in February 2023 so that all patients had a minimal follow-up of 18 months. Exposure: Patients born in 2 federal states in Germany underwent screening in a newborn screening pilot project. All other patients were diagnosed after clinical symptom onset. All patients received standard care within the same health care system. Main Outcomes: The primary end point was the achievement of motor milestones. Results: A total of 234 children (123 [52.6%] female) were identified who met inclusion criteria and were included in the analysis: 44 (18.8%) in the newborn screening cohort and 190 children (81.2%) in the clinical symptom onset cohort. The mean (SD) age at start of treatment with 1 of the approved disease-modifying drugs was 1.3 (2.2) months in the newborn screening cohort and 10.7 (9.1) months in the clinical symptom onset cohort. In the newborn screening cohort, 40 of 44 children (90.9%) gained the ability to sit independently vs 141 of 190 (74.2%) in the clinical symptom onset cohort. For independent ambulation, the ratio was 28 of 40 (63.6%) vs 28 of 190 (14.7%). Conclusions and Relevance: This nonrandomized controlled trial demonstrated effectiveness of newborn screening for infants with SMA in the real-world setting. Functional outcomes and thus the response to treatment were significantly better in the newborn screening cohort compared to the unscreened clinical symptom onset group. Trial Registration: German Clinical Trials Register: DRKS00012699.
Subject(s)
Neonatal Screening , Humans , Neonatal Screening/methods , Infant, Newborn , Female , Male , Infant , Germany , Registries , Muscular Atrophy, Spinal/diagnosis , Pilot Projects , Early DiagnosisABSTRACT
Background: Real-world data on gene addition therapy (GAT) with onasemnogene abeparvovec (OA), including all age groups and with or without symptoms of the disease before treatment are needed to provide families with evidence-based advice and realistic therapeutic goals. Aim of this study is therefore a population-based analysis of all patients with SMA treated with OA across Germany, Austria and Switzerland (D-A-CH). Methods: This observational study included individuals with Spinal Muscular Atrophy (SMA) treated with OA in 29 specialized neuromuscular centers in the D-A-CH-region. A standardized data set including WHO gross motor milestones, SMA validated motor assessments, need for nutritional and respiratory support, and adverse events was collected using the SMArtCARE registry and the Swiss-Reg-NMD. Outcome data were analyzed using a prespecified statistical analysis plan including potential predictors such as age at GAT, SMN2 copy number, past treatment, and symptom status. Findings: 343 individuals with SMA (46% male, 54% female) with a mean age at OA of 14.0 months (range 0-90, IQR 20.0 months) were included in the analysis. 79 (23%) patients were clinically presymptomatic at the time of treatment. 172 (50%) patients received SMN2 splice-modifying drugs prior to GAT (risdiplam: n = 16, nusinersen: n = 154, both: n = 2). Functional motor improvement correlated with lower age at GAT, with the best motor outcome in those younger than 6 weeks, carrying 3 SMN2 copies, and being clinically presymptomatic at time of treatment. The likelihood of requiring ventilation or nutritional support showed a significantly increase with older age at the time of GAT and remained stable thereafter. Pre-treatment had no effect on disease trajectories. Liver-related adverse events occurred significantly less frequently up to 8 months of age. All other adverse events showed an even distribution across all age and weight groups. Interpretation: Overall, motor, respiratory, and nutritional outcome were dependent on timing of GAT and initial symptom status. It was best in presymptomatic children treated within the first six weeks of life, but functional motor scores also increased significantly after treatment in all age groups up to 24 months. Additionally, OA was best tolerated when administered at a young age. Our study therefore highlights the need for SMA newborn screening and immediate treatment to achieve the best possible benefit-risk ratio. Funding: The SMArtCARE and Swiss-Reg-NMD registries are funded by different sources (see acknowledgements).
ABSTRACT
Newborn screening for 5qSMA offers the potential for early, ideally pre-symptomatic, therapeutic intervention. However, limited data exist on the outcomes of individuals with 4 copies of SMN2, and there is no consensus within the SMA treatment community regarding early treatment initiation in this subgroup. To provide evidence-based insights into disease progression, we performed a retrospective analysis of 268 patients with 4 copies of SMN2 from the SMArtCARE registry in Germany, Austria and Switzerland. Inclusion criteria required comprehensive baseline data and diagnosis outside of newborn screening. Only data prior to initiation of disease-modifying treatment were included. The median age at disease onset was 3.0 years, with a mean of 6.4 years. Significantly, 55% of patients experienced symptoms before the age of 36 months. 3% never learned to sit unaided, a further 13% never gained the ability to walk independently and 33% of ambulatory patients lost this ability during the course of the disease. 43% developed scoliosis, 6.3% required non-invasive ventilation and 1.1% required tube feeding. In conclusion, our study, in line with previous observations, highlights the substantial phenotypic heterogeneity in SMA. Importantly, this study provides novel insights: the median age of disease onset in patients with 4 SMN2 copies typically occurs before school age, and in half of the patients even before the age of three years. These findings support a proactive approach, particularly early treatment initiation, in this subset of SMA patients diagnosed pre-symptomatically. However, it is important to recognize that the register will not include asymptomatic individuals.
Subject(s)
Muscular Atrophy, Spinal , Survival of Motor Neuron 2 Protein , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Age of Onset , Austria/epidemiology , Disease Progression , Germany , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Neonatal Screening , Registries , Retrospective Studies , Survival of Motor Neuron 2 Protein/genetics , SwitzerlandABSTRACT
Spinal muscular atrophy (SMA) is a rare genetic disorder, with the most common form being 5q SMA. Survival of children with severe SMA is poor, yet major advances have been made in recent years in pharmaceutical treatment, such as gene-therapy, which has improved patient survival. Therefore, clinical problems, such as the development of spinal deformities in these genetically treated SMA children represent an unknown challenge in clinical work. In a retrospective case series, the development of spinal deformities was analyzed in 16 SMA children (9 male, 7 female) treated with onasemnogene abeparvovec in two institutions during the years 2020 to 2022. Ten out of sixteen patients had a significant kyphosis, and nine out of sixteen patients had significant scoliosis, with the mean curvature angles of 24 ± 27° for scoliosis, and 69 ± 15° for kyphosis. Based on these preliminary data, it can be assumed that early-onset kyphosis presents a clinical challenge in gene-therapy-treated SMA children. Larger datasets with longer follow-up times need to be collected in order to verify these preliminary observations.
ABSTRACT
Collagen XII, belonging to the fibril-associated collagens, is a homotrimeric secreted extracellular matrix (ECM) protein encoded by the COL12A1 gene. Mutations in the human COL12A1 gene cause an Ehlers-Danlos/myopathy overlap syndrome leading to skeletal abnormalities and muscle weakness. Here, we studied the role of collagen XII in joint pathophysiology by analyzing collagen XII deficient mice and human patients. We found that collagen XII is widely expressed across multiple connective tissue of the developing joint. Lack of collagen XII in mice destabilizes tendons and the femoral trochlear groove to induce patellar subluxation in the patellofemoral joint. These changes are associated with an ECM damage response in tendon and secondary quadriceps muscle degeneration. Moreover, patellar subluxation was also identified as a clinical feature of human patients with collagen XII deficiency. The results provide an explanation for joint hyperlaxity in mice and human patients with collagen XII deficiency.
ABSTRACT
Now that targeted therapies for spinal muscular atrophy are available, attempts are being made worldwide to include screening for spinal muscular atrophy in general newborn screening. In Germany, after pilot projects from 2018-2021, it was included in the general newborn screening from October 2021. To ensure a smooth transition, criteria for follow-up were developed together with key stakeholders. At the beginning of the transition to nationwide screening, false positive findings were reported in 3 patients. After optimization of the screening method in the laboratories concerned, all findings have been subsequently confirmed. On average, the first presentation to a neuromuscular center occurred on day 12 of life, and in patients with 2 or 3 SMN2 copies, therapy started on day 26 of life. Compared with the pilot project, there was no significant delay in timing.
Subject(s)
Muscular Atrophy, Spinal , Infant, Newborn , Humans , Pilot Projects , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/epidemiology , Muscular Atrophy, Spinal/therapy , Neonatal Screening/methods , Germany , TimeABSTRACT
BACKGROUND AND OBJECTIVES: Disease progression in patients with spinal muscular atrophy (SMA) has changed dramatically within the past years due to the approval of three different disease-modifying treatments. Nusinersen was the first drug to be approved for the treatment of SMA patients. Clinical trials provided data from infants with SMA type 1 and children with SMA type 2, but there is still insufficient evidence and only scarcely reported long-term experience for nusinersen treatment in ambulant patients. Here, we report data from the SMArtCARE registry of ambulant patients under nusinersen treatment with a follow-up period of up to 38 months. METHODS: SMArtCARE is a disease-specific registry in Germany, Austria and Switzerland. Data are collected as real-world data during routine patient visits. Our analysis included all patients under treatment with nusinersen able to walk independently before start of treatment with focus on changes in motor function. RESULTS: Data from 231 ambulant patients were included in the analysis. During the observation period, 31 pediatric walkers (27.2%) and 31 adult walkers (26.5%) experienced a clinically meaningful improvement of≥30âm in the 6-Minute-Walk-Test. In contrast, only five adult walkers (7.7%) showed a decline in walking distance≥30âm, and two pediatric walkers (1.8%) lost the ability to walk unassisted under treatment with nusinersen. HFMSE and RULM scores improved in pediatric and remained stable in adult patients. CONCLUSION: Our data demonstrate a positive effect of nusinersen treatment in most ambulant pediatric and adult SMA patients. We not only observed a stabilization of disease progression or lack of deterioration, but clinically meaningful improvements in walking distance.
Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Infant , Adult , Child , Humans , Prospective Studies , Spinal Muscular Atrophies of Childhood/drug therapy , Muscular Atrophy, Spinal/drug therapy , Walking , Registries , Disease ProgressionABSTRACT
Variants in transcription factor p63 have been linked to several autosomal dominantly inherited malformation syndromes. These disorders show overlapping phenotypic characteristics with various combinations of the following features: ectodermal dysplasia, split-hand/foot malformation/syndactyly, lacrimal duct obstruction, hypoplastic breasts and/or nipples, ankyloblepharon filiforme adnatum, hypospadias and cleft lip/palate. We describe a family with six individuals presenting with a striking novel phenotype characterized by a furrowed or cleft tongue, a narrow face, reddish hair, freckles and various foot deformities. Whole-exome sequencing (WES) identified a novel heterozygous variant, c.3G>T, in TP63 affecting the translation initiation codon (p.1Met?). Sanger sequencing confirmed dominant inheritance of this unique variant in all six affected family members. In summary, our findings indicate that heterozygous variants in TP63 affecting the first translation initiation codon result in a novel phenotype dominated by a cleft tongue, expanding the complex genotypic and phenotypic spectrum of TP63-associated disorders.
Subject(s)
Cleft Lip , Cleft Palate , Ectodermal Dysplasia , Cleft Lip/genetics , Cleft Palate/genetics , Codon, Initiator , Ectodermal Dysplasia/genetics , Humans , Male , Tongue , Transcription Factors/genetics , Tumor Suppressor Proteins/geneticsABSTRACT
BACKGROUND: Given the novelty of gene replacement therapy with onasemnogene abeparvovec in spinal muscular atrophy, efficacy and safety data are limited, especially for children older than 24 months, those weighing more than 8·5 kg, and those who have received nusinersen. We aimed to provide real-world data on motor function and safety after gene replacement therapy in different patient subgroups. METHODS: We did a protocol-based, multicentre prospective observational study between Sept 21, 2019, and April 20, 2021, in 18 paediatric neuromuscular centres in Germany and Austria. All children with spinal muscular atrophy types 1 and 2 receiving onasemnogene abeparvovec were included in our cohort, and there were no specific exclusion criteria. Motor function was assessed at the time of gene replacement therapy and 6 months afterwards, using the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) and Hammersmith Functional Motor Scale-Expanded (HFMSE) scores. Additionally, in children pretreated with nusinersen, motor function was assessed before and after treatment switch. Off-target adverse events were analysed with a focus on liver function, thrombocytopaenia, and potential cardiotoxicity. FINDINGS: 76 children (58 pretreated with nusinersen and 18 who were nusinersen naive) with spinal muscular atrophy were treated with onasemnogene abeparvovec at a mean age of 16·8 months (range 0·8-59·0, IQR 9-23) and a mean weight of 9·1 kg (range 4·0-15·0, IQR 7·4-10·6). In 60 patients with available data, 49 had a significant improvement on the CHOP-INTEND score (≥4 points) and HFMSE score (≥3 points). Mean CHOP INTEND scores increased significantly in the 6 months after therapy in children younger than 8 months (n=16; mean change 13·8 [SD 8·5]; p<0·0001) and children aged between 8 and 24 months (n=34; 7·7 [SD 5·2]; p<0·0001), but not in children older than 24 months (n=6; 2·5 [SD 5·2]; p=1·00). In the 45 children pretreated with nusinersen and had available data, CHOP INTEND score increased by 8·8 points (p=0·0003) at 6 months after gene replacement therapy. No acute complications occurred during infusion of onasemnogene abeparvovec, but 56 (74%) patients had treatment-related side-effects. Serious adverse events occurred in eight (11%) children. Liver enzyme elevation significantly increased with age and weight at treatment. Six (8%) patients developed acute liver dysfunction. Other adverse events included pyrexia (n=47 [62%]), vomiting or loss of appetite (41 [54%]), and thrombocytopenia (n=59 [78%]). Prednisolone treatment was significantly prolonged with a mean duration of 15·7 weeks (IQR 9-19), mainly due to liver enzyme elevation. Cardiac adverse events were rare; only two patients had abnormal echocardiogram and echocardiography findings. INTERPRETATION: This study provides class IV evidence that children with spinal muscular atrophy aged 24 months or younger and patients pretreated with nusinersen significantly benefit from gene replacement therapy, but adverse events can be severe and need to be closely monitored. FUNDING: None. TRANSLATION: For the German translation of the abstract see Supplementary Materials section.
Subject(s)
Body Weight/physiology , Genetic Therapy , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides , Age Factors , Austria , Child, Preschool , Female , Germany , Humans , Infant , Male , Oligonucleotides/adverse effects , Oligonucleotides/therapeutic use , Prospective Studies , Surveys and QuestionnairesABSTRACT
BACKGROUND: The development and approval of disease modifying treatments have dramatically changed disease progression in patients with spinal muscular atrophy (SMA). Nusinersen was approved in Europe in 2017 for the treatment of SMA patients irrespective of age and disease severity. Most data on therapeutic efficacy are available for the infantile-onset SMA. For patients with SMA type 2 and type 3, there is still a lack of sufficient evidence and long-term experience for nusinersen treatment. Here, we report data from the SMArtCARE registry of non-ambulant children with SMA type 2 and typen 3 under nusinersen treatment with a follow-up period of up to 38 months. METHODS: SMArtCARE is a disease-specific registry with data on patients with SMA irrespective of age, treatment regime or disease severity. Data are collected during routine patient visits as real-world outcome data. This analysis included all non-ambulant patients with SMA type 2 or 3 below 18 years of age before initiation of treatment. Primary outcomes were changes in motor function evaluated with the Hammersmith Functional Motor Scale Expanded (HFMSE) and the Revised Upper Limb Module (RULM). RESULTS: Data from 256 non-ambulant, pediatric patients with SMA were included in the data analysis. Improvements in motor function were more prominent in upper limb: 32.4% of patients experienced clinically meaningful improvements in RULM and 24.6% in HFMSE. 8.6% of patients gained a new motor milestone, whereas no motor milestones were lost. Only 4.3% of patients showed a clinically meaningful worsening in HFMSE and 1.2% in RULM score. CONCLUSION: Our results demonstrate clinically meaningful improvements or stabilization of disease progression in non-ambulant, pediatric patients with SMA under nusinersen treatment. Changes were most evident in upper limb function and were observed continuously over the follow-up period. Our data confirm clinical trial data, while providing longer follow-up, an increased number of treated patients, and a wider range of age and disease severity.
Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Child , Humans , Prospective Studies , Spinal Muscular Atrophies of Childhood/drug therapy , Registries , Disease Progression , Upper ExtremityABSTRACT
The natural history of patients with spinal muscular atrophy (SMA) has changed due to advances in standard care and development of targeted treatments. Nusinersen was the first drug approved for the treatment of all SMA patients. The transfer of clinical trial data into a real-life environment is challenging, especially regarding the advice of patients and families to what extent they can expect a benefit from the novel treatment. We report the results of a modified Delphi consensus process among child neurologists from Germany, Austria and Switzerland about the indication or continuation of nusinersen treatment in children with SMA type 1 based on different clinical case scenarios.
Subject(s)
Consensus , Neurologists , Oligonucleotides/therapeutic use , Pediatricians , Spinal Muscular Atrophies of Childhood/drug therapy , Austria , Child , Delphi Technique , Germany , Humans , SwitzerlandABSTRACT
The selenoprotein N1-related myopathies comprise rigid spine muscular dystrophy, the "classical" form of multiminicore disease, a desmin-related myopathy with Mallory body like inclusions and a form of congenital fiber-type disproportion. To define the phenotype and long-term clinical course in juvenile Selenoprotein N1-related myopathies 11 juvenile patients from eight families with SEPN1 mutations were assessed over a mean period of 7.2 years. Clinical findings, histomorphological studies, respiratory investigations and genetic data were analyzed: age of manifestation varied within the first 2 years of life with muscle hypotonia, lag of head control and delayed motor development. Further gross motor development was normal in 9/11 patients. All patients were ambulant for at least 1000 m at a mean age of 13.7 years. Eight patients exhibited a rigid spine diagnosed at a mean age of 10 years. All patients had respiratory impairment with a vital capacity ranging from 18% to 65%. Four patients were intermittently nocturnally ventilated at a mean age of 11 years. Body mass index was below 20 (kgm(-2)) in all patients. Muscle biopsies of eight individuals revealed multiminicores (n=2), congenital fiber-type disproportion (n=1), myopathic changes with single cores (n=2) and unspecific myopathic features (n=3). Mutations were distributed throughout the entire SEPN1 gene. Although the phenotype of juvenile selenoprotein N1-related myopathies is homogenous regarding the main symptoms we describe a variable degree of clinical severity. Major complications were early respiratory failure, impaired increase in weight and orthopedic problems. There seems to be no correlation between skeletal muscle weakness and respiratory failure.
Subject(s)
Muscle Proteins/genetics , Muscular Dystrophies/complications , Phenotype , Selenoproteins/genetics , Age of Onset , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Male , Muscle, Skeletal/pathology , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , TimeABSTRACT
Muscle ultrasound is considered a useful noninvasive technique for visualizing normal and pathological skeletal muscle. We determined the accuracy of qualitative muscle ultrasound in the discrimination of normal muscle from myopathic, neurogenic, and unspecifically abnormal tissue changes in the evaluation of suspected NMD in childhood. Sensitivity and specificity of muscle ultrasound were assessed by comparing sonographic classification of muscle tissue changes in 134 children with definitive diagnosis as provided by muscle histology or mutation analysis performed subsequently to the sonography. We found a sensitivity of 81% and a specificity of 96% for detection of any abnormal muscle tissue alteration by ultrasound. For detection of neurogenic changes, sensitivity was 77% with even higher specificity (98%). Accuracy was slightly lower for myopathic changes (79%) and clearly lower for unspecific abnormal tissue alterations (70%). Accuracy of ultrasound was lower in younger children. High reliability of muscle sonography justifies a more widespread use of this method in evaluation of suspected NMD in childhood.
Subject(s)
Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Neuromuscular Diseases/diagnostic imaging , Neuromuscular Diseases/pathology , Adolescent , Child , Child, Preschool , Evaluation Studies as Topic , Female , Humans , Infant , Infant, Newborn , Male , Retrospective Studies , Sensitivity and Specificity , Sex Factors , UltrasonographyABSTRACT
Congenital muscular dystrophy (CMD) due to merosin (laminin alpha2 chain) deficiency is an autosomal recessively inherited disorder characterized by severe muscular weakness and hypotonia from birth on. Brain involvement is the rule and characterized by variable T2 hyperintensities of white matter which appears swollen on cranial MRI. The pathophysiology of these white matter changes is not clear. In five patients with laminin alpha2 deficient CMD we performed short-echo time localized proton MRS with determination of absolute metabolite concentrations in grey and white matter. In affected white matter, a consistent pattern of metabolites was detected comprising reduced concentrations of N-acetylaspartate and N-acetylaspartylglutamate, creatine, and phosphocreatine, and to a milder degree of choline-containing compounds. In contrast, concentrations of myo-inositol were in the normal range. Spectra of cortical and subcortical grey matter were normal. The observed metabolite profile is consistent with white matter edema, that is reduced cellular density, and relative astrocytosis. This interpretation is in line with the hypothesis that laminin alpha2 deficiency results in leakage of fluids across the blood-brain barrier and a histopathological report of astrocytic proliferation in CMD.
Subject(s)
Cerebral Cortex/metabolism , Laminin/deficiency , Magnetic Resonance Spectroscopy , Muscular Dystrophies/diagnosis , Muscular Dystrophies/metabolism , Protons , Adolescent , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Child , Child, Preschool , Creatine/metabolism , Dipeptides/metabolism , Humans , Infant , Magnetic Resonance Imaging/methods , Male , Muscular Dystrophies/pathology , Muscular Dystrophies/physiopathology , Phosphocreatine/metabolismABSTRACT
BACKGROUND: Congenital myasthenic syndromes (CMSs) are a group of clinically and genetically heterogeneous inherited disorders of the neuromuscular junction. Mutations in the acetylcholine transferase (CHAT) gene cause a pre-synaptic CMS, typically associated with episodic apnoea and worsening of myasthenic symptoms during crises caused by infections, fever or stress. Between crises symptoms may be mild and variable. Acetylcholinesterase - inhibitor therapy is reported to improve clinical symptoms and reduce crises. PATIENTS AND METHODS: We present data on the long-term follow-up of 11 patients with a congenital myasthenic syndrome due to nine different CHAT mutations; ten of the patients have not been previously reported. RESULTS AND CONCLUSIONS: Manifestation varied from the neonatal period to the age of two years, follow-up time from nine months to 12 years. This cohort of CHAT patients studied here enabled us to describe two distinct phenotypes: The neonatal-onset group suffers from apnoeic crises, respirator dependency and bulbar weakness. Apnoea should be carefully distinguished from seizures; a CMS should be taken into account early to start appropriate therapy. Infantile-onset patients show mild permanent weakness, but experience apnoeic crises and worsening which resolve with Acetylcholinesterase - inhibitor treatment. However, after several years of treatment proximal muscle strength may decrease and lead to wheelchair dependency despite the continuation of Acetylcholinesterase - inhibitor therapy.
Subject(s)
Choline O-Acetyltransferase/genetics , Genetic Predisposition to Disease/genetics , Mutation/genetics , Myasthenic Syndromes, Congenital/etiology , Myasthenic Syndromes, Congenital/genetics , Arginine/genetics , Choline O-Acetyltransferase/antagonists & inhibitors , Electric Stimulation/methods , Electroencephalography/methods , Enzyme Inhibitors/therapeutic use , Female , Genetic Testing , Glycine/genetics , Histidine/genetics , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Muscle, Skeletal/pathology , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/physiopathology , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Cholinergic/immunology , Receptors, Cholinergic/metabolismABSTRACT
Ullrich congenital muscular dystrophy (UCMD) is caused by mutations in the three genes coding for the alpha chains of collagen VI and characterized by generalized muscle weakness, striking hypermobility of distal joints in conjunction with variable contractures of more proximal joints, and normal intellectual development. The diagnosis is supported by abnormal immunoreactivity for collagen VI on muscle biopsies. As patients with UCMD show clinical characteristics typical of classical disorders of connective tissue such as Ehlers-Danlos syndromes (EDS), we investigated the ultrastructure of skin biopsy samples from patients with UCMD (n=5). Electron microscopy of skin biopsies revealed ultrastructural abnormalities in all cases, including alterations of collagen fibril morphology (variation in size and composite fibers) and increase in ground substance, which resemble those seen in patients with EDS. Our findings suggest that there is a true connective tissue component as part of the phenotypic spectrum of UCMD and that there is considerable clinical as well as morphological overlap between UCMD and classic connective tissue disorders.