Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Anal Bioanal Chem ; 416(26): 5595-5604, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39153104

ABSTRACT

The request for novel hyphenated instruments and techniques, capable of affording exhaustive information and results, is a focus continuously watched out. In this context, the present work aimed at the development of an integrated system combining gas chromatographic (GC) separation with mass spectrometry (MS) and (solid deposition) Fourier transform infrared spectroscopy (FTIR) detection. An external transfer line was designed in the lab for the parallel coupling of the two detectors, in such a way to obtain complementary analytical information consisting of an MS spectrum, an IR spectrum and linear retention indices (LRI), within a single analysis. The instrument performance was demonstrated for the analysis of a commercial mixture consisting of 139 hydrocarbons, comprising linear, branched, unsaturated and aromatic compounds. A 100-m poly(dimethylsiloxane) column was employed for the separation, and the outlet flow was split 95:5 between the IR and MS detectors using two uncoated capillaries. The IR spectra were acquired from solid deposits on a zinc selenide disc (-90 °C), over a spot (detector area) of about 0.1 mm2, in the range of 4000-700 cm-1 and at a resolution of 4 cm-1. Final identification of the separated compounds by a library search was achieved by excluding incorrect results, sequentially using a three-filter approach (85% similarity against reference MS and IR library spectra and ±10 LRI unit tolerance). Based on these preliminary results, the GC-MS/sd-FTIR system is a promising tool for the characterization of complex matrix constituents, for which identification is cumbersome, by using only one detection technique.

2.
J Sep Sci ; 46(18): e2300261, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37386802

ABSTRACT

Separation science plays a crucial role in the isolation of novel compounds contained in complex matrices. Yet their rationale employment needs preliminary structure elucidation, which usually requires sufficient aliquots of grade substances to characterize the molecule by nuclear magnetic resonance experiments. In this study, two peculiar oxa-tricycloundecane ethers were isolated by means of preparative multidimensional gas chromatography from the brown alga species Dictyota dichotoma (Huds.) Lam., aiming to assign their 3D structures. Density functional theory simulations were carried out to select the correct configurational species matching the experimental NMR data (in terms of enantiomeric couples). In this case, the theoretical approach was crucial as the protonic signal overlap and spectral overcrowding were preventing any other unambiguous structural information. Just after the identification through the density functional theory data matching of the correct relative configuration it was possible to verify an enhanced self-consistency with the experimental data, confirming the stereochemistry. The results obtained further pave the way toward structure elucidation of highly asymmetric molecules, whose configuration cannot be inferred by other means or strategies.


Subject(s)
Phaeophyceae , Sesquiterpenes , Ethers , Magnetic Resonance Spectroscopy/methods , Chromatography, Gas/methods , Phaeophyceae/chemistry
3.
Anal Bioanal Chem ; 414(18): 5643-5656, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35389094

ABSTRACT

Recent times have witnessed an upsurge of interest in hemp and hemp-derived products, as driven by the scientific findings specific to the pharmacological properties of Cannabis sativa L. and its constituents. There has been evidence that the terpene profile, along with the cannabinoid content, produces in humans the effects associated with different strains, beyond fragrance perception. A great deal of effort has been put into developing analytical approaches to strengthen the scientific knowledge on cannabis essential oil composition and provide effective tools for ascertaining the authenticity of commercial cannabis samples. For this concern, enantio-selective-GC-C-IRMS has proven to be effective for assessing the ranges characteristic of the genuine samples and detecting any fraudulent additions. This research aimed at providing for the first time the enantiomeric and isotopic ratios of target terpenes in cannabis essential oils, obtained from microwave-assisted hydro-distillation from the fresh and dried inflorescences of different cannabis varieties. Implementing multidimensional gas chromatography separation was mandatory prior to detection, in order to obtain accurate δ13C values and enantiomeric data from completely separated peaks. For this purpose, a heart-cut method was developed, based on the coupling of an apolar first dimension column to a secondary chiral cyclodextrin-based stationary phase. Afterwards, the data gathered from enantio-selective-MDGC-C-IRMS/qMS analysis of a set of genuine samples were used to evaluate the quality of nineteen commercial cannabis essential oils purchased from local stores. Remarkably, the data in some cases evidenced enantiomeric ratios and δ13C values outside the typical ranges of genuine oils. Such findings suggest the usefulness of the method developed to ascertain the genuineness and quality of cannabis essential oils.


Subject(s)
Cannabis , Oils, Volatile , Cannabis/chemistry , Carbon Isotopes , Chromatography, Gas/methods , Gas Chromatography-Mass Spectrometry/methods , Humans , Oils, Volatile/analysis , Terpenes/analysis
4.
BMC Genomics ; 21(1): 90, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31996138

ABSTRACT

BACKGROUND: Truffles are symbiotic fungi that develop underground in association with plant roots, forming ectomycorrhizae. They are primarily known for the organoleptic qualities of their hypogeous fruiting bodies. Primarily, Tuber magnatum Pico is a greatly appreciated truffle species mainly distributed in Italy and Balkans. Its price and features are mostly depending on its geographical origin. However, the genetic variation within T. magnatum has been only partially investigated as well as its adaptation to several environments. RESULTS: Here, we applied an integrated omic strategy to T. magnatum fruiting bodies collected during several seasons from three different areas located in the North, Center and South of Italy, with the aim to distinguish them according to molecular and biochemical traits and to verify the impact of several environments on these properties. With the proteomic approach based on two-dimensional electrophoresis (2-DE) followed by mass spectrometry, we were able to identify proteins specifically linked to the sample origin. We further associated the proteomic results to an RNA-seq profiling, which confirmed the possibility to differentiate samples according to their source and provided a basis for the detailed analysis of genes involved in sulfur metabolism. Finally, geographical specificities were associated with the set of volatile compounds produced by the fruiting bodies, as quantitatively and qualitatively determined through proton transfer reaction-mass spectrometry (PTR-MS) and gas-chromatography-mass spectrometry (GC-MS). In particular, a partial least squares-discriminant analysis (PLS-DA) model built from the latter data was able to return high confidence predictions of sample source. CONCLUSIONS: Results provide a characterization of white fruiting bodies by a wide range of different molecules, suggesting the role for specific compounds in the responses and adaptation to distinct environments.


Subject(s)
Adaptation, Biological , Environment , Genomics , Metabolomics , Proteomics , Saccharomycetales/genetics , Saccharomycetales/metabolism , Computational Biology , Electrophoresis, Gel, Two-Dimensional , Gas Chromatography-Mass Spectrometry , Genomics/methods , Metabolomics/methods , Proteomics/methods , Transcriptome , Volatile Organic Compounds
5.
Faraday Discuss ; 218(0): 101-114, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31120047

ABSTRACT

The present research deals with the collection and structural elucidation of an unknown component, accounting for about 35% of the essential oil obtained upon distillation of the leaves of Eugenia uniflora L., harvested during summer (January, 2017) in Paraná State (Southern Brazil). A multidimensional gas chromatographic preparative system, based on the coupling of three GC systems equipped with apolar, PEG and ionic liquid-based stationary phases, was successfully applied for the isolation of the chromatographic band relative to the unknown molecule. The use of wide-bore columns allowed for an increased sample capacity compared to conventional micro-bore columns, thus the injection of a neat sample was feasible, greatly reducing the total collection time. A higher chromatographic efficiency was afforded by the use of a multidimensional approach in the heart-cut mode, exploiting the different selectivity of three stationary phases, which ensured the attainment of a highly pure fraction. In only five runs, more than 3 milligrams were collected, with an average purity greater then 95%. Finally, the unknown component was subjected to nuclear magnetic resonance spectroscopy, mass spectrometry and condensed phase Fourier-transform infrared spectroscopy, leading to the identification of 6-ethenyl-6-methyl-3,5-di(prop-1-en-2-yl)cyclohex-2-en-1-one. The presented approach has been demonstrated to be effective for the isolation and structural elucidation of unknown molecules in complex samples, which will allow for further in-depth studies, like biological evaluation or pharmacological tests.


Subject(s)
Eugenia/chemistry , Ionic Liquids/chemistry , Oils, Volatile/analysis , Chromatography, Gas , Molecular Conformation
6.
Anal Chem ; 90(11): 6610-6617, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29733629

ABSTRACT

Truffles are among the most expensive foods available in the market, usually used as flavoring additives for their distinctive aroma. The most valuable species is Tuber magnatum Pico, better known as "Alba white truffle", in which bis(methylthio)methane is the key aroma compound. Given the high economical value of genuine white truffles, analytical approaches are required to be able to discriminate between natural or synthetic truffle aroma. Gas chromatography coupled to combustion-isotope ratio mass spectrometry (GC-C-IRMS), exploiting the 13C/12C ratio abundance of the key flavorings compounds in foods, has been a recognized technique for authenticity and traceability purposes; however, a number of issues have greatly limited its widespread use so far. In the present research, a high-efficiency HS-SPME MDGC-C-IRMS with simultaneous quadrupole MS detection has been applied for the evaluation of bis(methylthio)methane, resolving the coelution occurring with other components. With the aim to minimize the effect of column bleeding on δ13C measurement, a medium polarity ionic liquid-based stationary phase was preferred to a polyethylene glycol one, as the secondary column. In total, 24 genuine white truffles harvested in Italy were analyzed, attaining a δ13C values between -42.6‰ and -33.9‰, with a maximum standard deviation lower than 0.7‰. Two commercial intact truffles and 14 commercial samples of pasta, sauce, olive oil, cream, honey, and fresh cheese flavored with truffle aroma were analyzed, and the results from δ13C measurement were evaluated in comparison with those of genuine "white truffle" range and commercial synthetic bis(methylthio)methane standard.


Subject(s)
Ascomycota/chemistry , Ionic Liquids/chemistry , Ascomycota/isolation & purification , Carbon Isotopes , Gas Chromatography-Mass Spectrometry
7.
Anal Bioanal Chem ; 410(14): 3297-3313, 2018 May.
Article in English | MEDLINE | ID: mdl-29666913

ABSTRACT

The task of lipid analysis and profiling is taking centre stage in many research fields and as a consequence, there has been an intense effort to develop suitable methodologies to discover, identify, and quantify lipids in the systems investigated. Given the high complexity and diversity of the lipidome, researchers have been challenged to afford thorough knowledge of all the lipid species in a given sample, by gathering the data obtained by complementary analytical techniques. In this research, an "omic" approach was developed to quickly fingerprint lipids in the Mediterranean mussel (Mytilus galloprovincialis), by exploiting multidimensional and hyphenated techniques. In detail, two-dimensional comprehensive hydrophilic interaction liquid chromatography coupled to reversed-phase liquid chromatography afforded both class-type separation and lipid assignment within the total lipid species in the sample, by the coupling of a 2.1-mm I.D. partially porous stationary phase in the first dimension, to a short (50 mm) monodisperse octadecylsilica secondary column; individual molecular species were afterwards identified by means of their ion trap-time of flight mass spectra obtained by electrospray ionization. More than 200 neutral and polar lipids were identified, and among the latter, phosphatydylcholine and phosphatydylethanolamine were the most represented classes, together with their mono-acylated forms, plasmanyl and plasmenyl derivatives. Subsequently, separation of the saturated and unsaturated isomers of the fatty acids (including the saturated C16:0 and the polyunsaturated C22:6) in the offline collected phospholipid fractions was accomplished by gas chromatography analysis of the corresponding methyl esters, on a 200 m × 0.25 mm, 0.2 µm d f ionic liquid column.


Subject(s)
Chromatography, Reverse-Phase/methods , Lipids/analysis , Mass Spectrometry/methods , Mytilus/chemistry , Animals , Chromatography, Reverse-Phase/instrumentation , Equipment Design , Gas Chromatography-Mass Spectrometry/instrumentation , Gas Chromatography-Mass Spectrometry/methods , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry/instrumentation , Solid Phase Extraction/instrumentation , Solid Phase Extraction/methods
9.
J Sep Sci ; 40(1): 361-382, 2017 01.
Article in English | MEDLINE | ID: mdl-27696781

ABSTRACT

The task of lipid analysis has always challenged separation scientists, and new techniques in chromatography were often developed for the separation of lipids; however, no single technique or methodology is yet capable of affording a comprehensive screening of all lipid species and classes. This review acquaints the role of supercritical fluid chromatography within the field of lipid analysis, from the early developed capillary separations based on pure CO2 , to the most recent techniques employing packed columns under subcritical conditions, including the niche multidimensional techniques using supercritical fluids in at least one of the separation dimensions. A short history of supercritical fluid chromatography will be introduced first, from its early popularity in the late 1980s, to the sudden fall and oblivion until the last decade, experiencing a regain of interest within the chromatographic community. Afterwards, the subject of lipid nomenclature and classification will be briefly dealt with, before discussing the main applications of supercritical fluid chromatography for food analysis, according to the specific class of lipids.


Subject(s)
Chromatography, Supercritical Fluid , Lipids/analysis , Food Analysis/instrumentation
10.
Anal Chem ; 88(7): 4021-8, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26937891

ABSTRACT

Recently the miniaturization of liquid chromatography (LC) systems and progresses in mass spectrometry instrumentation have enabled direct introduction of the effluent coming from a nanoLC column into the high-vacuum region of an electron ionization source. In the present research, a nanoLC system was directly coupled to an electron ionization mass spectrometer (EI-MS) without any interface or modification of the ion source. The advantage with respect to atmospheric pressure ionization techniques, normally coupled with LC, is major identification power because of a more extensive and reproducible fragmentation pattern, without any matrix effect or mobile-phase interference. In particular, a nanoLC/EI-MS method was developed for elucidation of the free fatty acid profile in mussel samples, avoiding a previous derivatization step, required when gas chromatographic analysis is involved. A total of 20 fatty acids were reliably identified through the comparison with commercial libraries. A quantitative determination was also carried out by using the response factors approach along with the internal standard method, allowing for quantification of 14 fatty acids. Among them, palmitic acid resulted the most abundant, followed by ω6 arachidonic acid. The quantitative data were compared with those obtained by a well-established technique, such as gas chromatography with flame ionization detection (GC-FID). Both nanoLC/EI-MS and GC-FID methods were validated and similar results were obtained in terms of limit of detection and quantification, resulting in the picomole range, and sensitivity as well was not significantly different, as demonstrated by comparing the slope values of the calibration curves (p < 0.05, from a t-test).


Subject(s)
Fatty Acids/analysis , Mytilus/chemistry , Nanotechnology , Spectrometry, Mass, Electrospray Ionization , Animals , Chromatography, Liquid
11.
J Sep Sci ; 39(3): 537-44, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26613675

ABSTRACT

The evaluation of a novel medium-polarity ionic-liquid-based gas chromatography column, SLB-IL60, towards the analysis of a complex essential oil, namely, a peppermint essential oil sample, is reported. The SLB-IL60 30 m column was subjected to bleeding measurements, by means of conventional gas chromatography with mass spectrometry. The SLB-IL60 column was then evaluated in the analysis of pure standard compounds, chosen as typical constituents of peppermint essential oil. Resolution and peak symmetry (expressed as tailing factors at 10% of peak height) were measured and the results were compared to those obtained on the most widely used columns in such an application, namely a medium-polarity [100% poly(ethyleneglycol)] stationary phase, and an apolar 5% diphenyl/95% dimethyl siloxane. The final part of the evaluation was dedicated to the gas chromatography with mass spectrometry analysis of a peppermint essential oil sample and again the data were compared to those obtained on the 100% poly(ethyleneglycol) and the 5% diphenyl/95% dimethyl siloxane phase. Linear retention indices were determined for all the identified components on the ionic liquid capillary.


Subject(s)
Chromatography, Gas/methods , Ionic Liquids/chemistry , Mentha piperita/chemistry , Oils, Volatile/analysis , Reference Standards , Volatilization
12.
J Sep Sci ; 39(3): 623-31, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26614690

ABSTRACT

Mineral oils, which are mainly composed of saturated hydrocarbons and aromatic hydrocarbons, are widespread food contaminants. Liquid chromatography coupled to gas chromatography with flame ionization detection represents the method of choice to determine these two families. However, despite the high selectivity of this technique, the presence of olefins (particularly squalene and its isomers) in some samples as in olive oils, does not allow the correct quantification of the mineral oil aromatic hydrocarbons fraction, requiring additional off-line tools to eliminate them. In the present research, a novel on-line liquid chromatography coupled to gas chromatography method is described for the determination of hydrocarbon contamination in edible oils. Two different liquid chromatography columns, namely a silica one (to retain the bulk of the matrix) and a silver-ion one (which better retains the olefins), were coupled in series to obtain the mineral oil aromatic hydrocarbons hump free of interfering peaks. Furthermore, the use of a simultaneous dual detection, flame ionization detector and triple quadrupole mass spectrometer allowed us not only to quantify the mineral oil contamination, but also to evaluate the presence of specific markers (i.e. hopanes) to confirm the petrogenic origin of the contamination.


Subject(s)
Chromatography, Gas/methods , Chromatography, Liquid/methods , Hydrocarbons, Aromatic/analysis , Mineral Oil/chemistry
13.
J Sep Sci ; 39(11): 2018-27, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27060470

ABSTRACT

Polymethoxyflavones possess many biological properties, as lipid-lowering, hypoglycaemic, anti-inflammatory, antioxidant, and anticancer activities, therefore, they may be employed as nutraceuticals or therapeutic agents. The scarcity of pure polymethoxyflavones on the market as well as their low water solubility limited in vivo studies and the use of polymethoxyflavones as food or pharmaceutical supplements. Since mandarin peels are a rich source of polymethoxyflavones, tangeretin, nobiletin, sinensetin, tetra-O-methyl scutellarein, and heptamethoxyflavone were purified from a nonvolatile residue of a cold-pressed mandarin essential oil using a multidimensional preparative liquid chromatographic system coupled with a photodiode array detector and a single quadrupole mass spectrometer. A new prototype, consisting of a nano-liquid chromatography system coupled with an electron ionization mass spectrometer, was used for the characterization of the pure isolated molecules. Finally, due to the collection of highly pure nobiletin and tangeretin, the ability of 2-hydroxypropyl-ß-cyclodextrin to enhance the water solubility of both polymethoxyflavones was evaluated by phase solubility studies and Job's plot method.


Subject(s)
Citrus/chemistry , Cold Temperature , Flavones/chemistry , Flavones/isolation & purification , Oils, Volatile/chemistry , Polymers/chemistry , Solubility , Water/chemistry , Chromatography, High Pressure Liquid , Fruit/chemistry , Software
14.
Anal Chem ; 86(9): 4295-301, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24725161

ABSTRACT

This study reports the recent evolution of a multidimensional GC-GC-GC preparative system, now combined with an online LC preseparation step, operated under normal phase conditions. It is herein shown that the four-dimensional instrument can collect sample components with a concentration lower than 10%, in a short time period, while maintaining a high level of analyte purity. The LC dimension allows (I) the injection of higher sample amounts, compared to "direct" GC injection; (II) a polarity-based preseparation, leading to the GC injection of simplified subsamples, and thus reducing the possibility of coelutions; (III) to eliminate the essential-oil "matrix", replacing it with the LC mobile phase (the GC system is more protected from potential contamination); (IV) the LC mobile phase is of much lower viscosity with respect to a pure, or highly concentrated essential oil, avoiding difficulties in the syringe sample withdrawal process, prior to GC injection. System optimization was performed by using standard solutions; in addition, a very complex sample, namely, vetiver essential oil, was subjected to the preparative process, with the scope of isolating two low-amount constituents (namely, α-amorphene and ß-vetivone). The latter two sesquiterpenoids, which accounted for 1.7 and 4.0% of the sample (considering the volatiles), respectively, were successfully collected at the milligram level, in a one-day work period, with a purity degree in excess of 90%.


Subject(s)
Chromatography, Gas/methods , Chromatography, Liquid/methods , Ionic Liquids/chemistry , Siloxanes/chemistry
15.
Anal Chem ; 86(22): 11255-62, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25327521

ABSTRACT

In this work, two analytical liquid chromatography methods were developed and compared for the characterization of aqueous phases from pyrolysis of lignocellulosic biomasses. NanoLC electron ionization-mass spectrometry (EI-MS) represents a novel and useful tool for both separation and identification of semi/nonvolatile and thermolabile molecules. The use of nanoscale flow rates, the highly reproducibility, and high detailed information on EI spectra are the principal advantages of this technique. On the other hand, comprehensive 2D-LC, providing a two-dimensional separation, increases the overall peak capacity lowering the occurrence of peak coelutions. Despite the use of reversed phase modes in both dimensions, a satisfactory degree of orthogonality was achieved by the employment of a smart design of gradient elution strategies in the second dimension in combination with photodiode array detection (PDA) and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). Because of the absence of the preliminary extraction procedure, the fingerprint obtained for these samples results is independent of the extraction yield or contamination contrary to the gas chromatography-mass spectrometry (GC-MS) approach where a liquid-liquid extraction of the water phase is necessary. The main classes of identified compounds were phenols, ketones, furans, and alcohols. The synergistic information on the two powerful analytical approaches, e.g., NanoLC EI-MS and LC × LC, in the identification of such complex samples has never been investigated and fully benefit on the one hand from the superior degree of mass spectral information from EI-MS and on the other hand from enhanced LC × LC compound separation.

17.
Biomolecules ; 14(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38927113

ABSTRACT

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterised by a high content of free and glycosylated monoterpenoids, which gives wines very intense notes of ripe fruit and flowers. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, hotrienol, diendiols, trans/cis-8-hydroxy linalool, geranic acid and myrcene, that give citrus, rose, and peach notes. Except for quali-quantitative analysis, no investigations regarding the isotopic values of the target volatile compounds in grapes and wines are documented in the literature. Nevertheless, the analysis of the stable isotope ratio represents a modern and powerful tool used by the laboratories responsible for official consumer protection, for food quality and genuineness assessment. To this aim, the aromatic compounds extracted from grapes and wine were analysed both by GC-MS/MS, to define the aroma profiles, and by GC-C/Py-IRMS, for a preliminary isotope compound-specific investigation. Seventeen samples of Moscato Giallo grapes were collected during the harvest season in 2021 from two Italian regions renowned for the cultivation of this aromatic variety, Trentino Alto Adige and Veneto, and the corresponding wines were produced at micro-winery scale. The GC-MS/MS analysis confirmed the presence of the typical terpenoids both in glycosylated and free forms, responsible for the characteristic aroma of the Moscato Giallo variety, while the compound-specific isotope ratio analysis allowed us to determine the carbon (δ13C) and hydrogen (δ2H) isotopic signatures of the major volatile compounds for the first time.


Subject(s)
Gas Chromatography-Mass Spectrometry , Vitis , Volatile Organic Compounds , Wine , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Gas Chromatography-Mass Spectrometry/methods , Wine/analysis , Vitis/chemistry , Tandem Mass Spectrometry/methods , Carbon Isotopes/analysis , Fruit/chemistry , Odorants/analysis
18.
J Chromatogr A ; 1727: 464994, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38759461

ABSTRACT

This research aimed to support police forces in their battle against illicit drug trafficking by means of a multi-technique approach, based on gas chromatography. In detail, this study was focused on the profiling of volatile substances in narcotic Cannabis sativa L. flowering tops. For this purpose, the Scientific Investigation Department, RIS Carabinieri of Messina, provided 25 seized samples of Cannabis sativa L. The content of Δ9-tetrahydrocannabinol (THC), useful to classify cannabis plant as hemp (≤ 0.2 %) or as marijuana (> 0.2 %), was investigated. Essential oils of illicit drug samples were extracted using a microwave-assisted hydro-distillation (MAHD) system; GC-MS and GC-FID analytical techniques were used for the characterization of the terpenes and terpenoids fingerprint. Furthermore, the enantiomeric and carbon isotopic ratios of selected chiral compounds were investigated using a heart-cutting multidimensional GC (MDGC) approach. The latter exploited a combination of an apolar column in the first dimension, and a chiral cyclodextrin-based column in the second one, prior to parallel isotope-ratio mass spectrometry (C-IRMS) and MS detection. Finally, all the data were gathered into a statistical model, to demonstrate the existence of useful parameters to be used for the classification of seized samples.


Subject(s)
Cannabis , Distillation , Flowers , Gas Chromatography-Mass Spectrometry , Microwaves , Oils, Volatile , Cannabis/chemistry , Distillation/methods , Flowers/chemistry , Gas Chromatography-Mass Spectrometry/methods , Oils, Volatile/analysis , Oils, Volatile/chemistry , Terpenes/analysis , Dronabinol/analysis , Chromatography, Gas/methods
19.
J Chromatogr A ; 1730: 465149, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38991602

ABSTRACT

In this study, multiple analytical approaches, including simultaneous enantiomeric and isotopic analysis, were employed to thoroughly investigate the volatile fraction in Moscato giallo grape berries and wines. For the qualitative and quantitative profiling, a fast GC-QqQ/MS approach was successfully utilized. However, prior to isotopic analysis, the extracts underwent an additional concentration step, necessitating an assessment of isotopic fractionation during the concentration process. Once the absence of carbon isotopic fractionation was confirmed, this research aimed to develop a suitable gas chromatographic method for the simultaneous detection of both enantiomeric and isotopic ratios of target monoterpenoids in Moscato giallo samples. To address the limitations associated with a one-dimensional approach, multidimensional gas chromatography was employed to enhance separation before IRMS and qMS detections. Utilizing a Deans switch transfer device, the coupling of an apolar column in the first dimension and a chiral cyclodextrin-based stationary phase in the second dimension proved effective for this purpose. The data obtained from the analysis of Moscato giallo samples allowed for the assessment of natural isotopic and enantiomeric distributions in grapes and wines for the first time in the literature. Significant enantiomeric excesses were observed for the target terpenoids investigated. Regarding isotopic distribution, a consistent trend was observed for all detected target terpenols, including the linalool enantiomers. To date, this study represents the first investigation of simultaneous δ13C and chiral investigation of the main terpenoids in oenological products in the literature.


Subject(s)
Gas Chromatography-Mass Spectrometry , Vitis , Wine , Vitis/chemistry , Wine/analysis , Stereoisomerism , Gas Chromatography-Mass Spectrometry/methods , Carbon Isotopes/analysis , Monoterpenes/analysis , Monoterpenes/chemistry , Fruit/chemistry
20.
J Chromatogr A ; 1732: 465208, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39088897

ABSTRACT

Piper gaudichaudianum Kunth essential oil (EO) is a natural source of bioactive components, having multiple therapeutic applications. Its chemical composition is highly variable, and strictly depends on abiotic factors, resulting in various biological activities. The present study details the utilization of multiple gas chromatographic techniques alongside nuclear magnetic resonance (NMR) spectroscopy to characterize the essential oil of Piper gaudichaudianum Kunth from Brazil. Seventy-six components were identified using GC-MS analysis, while enantio­selective multidimensional gas chromatography elucidated the enantiomeric distribution of eight chiral components, for the first time in the literature. Following GC-MS analysis, an unidentified component, constituting approximately 27 % of the total oil, prompted an isolation step through preparative gas chromatography. Through the combined use of nuclear magnetic resonance, GC-Fourier transform infrared spectroscopy (FTIR), and mass spectrometry (MS), the unknown molecule was structurally identified as 4-[(3E)­dec-3-en-1-yl]phenol. Remarkably, it was identified as a known molecule, gibbilimbol B, and not previously listed in any MS database. Subsequently, the spectrum was included in a commercial library, specifically the FFNSC 4.0 MS database, for the first time.


Subject(s)
Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Oils, Volatile , Piper , Piper/chemistry , Oils, Volatile/chemistry , Oils, Volatile/analysis , Brazil , Gas Chromatography-Mass Spectrometry/methods , Spectroscopy, Fourier Transform Infrared/methods , Plant Oils/chemistry , Chromatography, Gas/methods
SELECTION OF CITATIONS
SEARCH DETAIL