Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
Environ Res ; 216(Pt 1): 114454, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36228687

ABSTRACT

In this study, the use of boron-based materials on efficiency of environmentally friendly porous ceramics was investigated. In this context, a glaze formulation was created that uses high amounts of frit and sintered at low temperatures. Boric acid and colemanite were added to glaze formulations and different alternative formulations were created by reducing the frit percentage. These materials were added to these glaze formulations in two different ways, calcined and raw. The glaze mixtures obtained from the formulations were applied on the ceramic body and fired at 950-1000-1020-1100-1200 °C in the laboratory oven. Crystal phase structures of glaze samples containing boric acid and colemanite were analyzed by X-Ray Crystallography (XRD) method. The surface properties and characterizations of the obtained samples were examined by scanning electron microscopy (SEM). Differential Thermal Analysis and Thermogravimetric analysis (DTA/TG) were performed to determine their thermal behavior and mass loss. As a result of the analysis, it was observed that boron derivatives are a good flux agent and do not have a negative effect on the surface and other technical properties of the glaze. In the formulations of glazes with high frit content and processed at low temperatures, the percentage of frit has been reduced and costs have been improved. Also, energy costs were improved with the reduction in firing temperatures. Considering the energy and raw material costs of this study, it is predicted that high efficiency will be achieved in the process.


Subject(s)
Boron , Ceramics , Porosity , Surface Properties
2.
Environ Res ; 231(Pt 1): 115972, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37137458

ABSTRACT

In this study, titanium dioxide- Pluronics @F127/functionalized -multi walled carbon nanotubes (TiO2-F127f-/MWCNT) nanocatalysts were prepared, characterized, and used in methylene blue (MB) degradation under ultrasonic conditions. The characterization studies were performed using TEM, SEM, and XRD analyses to reveal the morphological and chemical properties of TiO2-F127/MWCNT nanocatalysts. To detect the optimum parameters for MB degradation using TiO2-F127/f-MWCNT nanocatalysts, several experimental parameters were conducted at various conditions such as different temperatures, pH, catalyst amount, hydrogen peroxide (H2O2) concentration, and various reaction contents. Transmission electron microscopy (TEM) analyses showed that TiO2-F127/f-MWCNT nanocatalysts consisted of a homogenous structure and have a 12.23 nm particle size. The crystalline particle size of TiO2-F127/MWCNT nanocatalysts was found to be 13.31 nm. Scanning electron microscope (SEM) analyses revealed the surface structure of TiO2-F127/f-MWCNT nanocatalysts turned to be modified after TiO2 loaded on MWCNT. Under the optimum conditions; pH: 4, MB concentration: 25 mg/L, H2O2 concentration: 30 mol/L, reaction time: and catalyst dose: 24 mg/L, chemical oxygen demand (COD) removal efficiency reached a maximum of 92%. To detect the radical effectiveness, three scavenger solvents were tested. Reuse experiments revealed that TiO2-F127/f-MWCNT nanocatalysts retained 84.2% catalytical activity after 5 cycles. Gas chromatography-mass spectrometry (GC-MS) was successfully used to identify the generated intermediates. Based on the experimental results, it has been suggested that •OH radicals are the main active species responsible for the degradation reaction in the presence of the TiO2-F127/f-MWCNT nanocatalysts.


Subject(s)
Nanotubes, Carbon , Poloxamer , Methylene Blue/chemistry , Nanotubes, Carbon/chemistry , Hydrogen Peroxide , Catalysis , Titanium/chemistry
3.
Environ Res ; 221: 115287, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36640937

ABSTRACT

Activated carbon (AC) supported palladium cobalt bimetallic nanoparticles (PdCo@AC NPs) were obtained by green synthesis method using Cinnamomum verum (C. Verum) extract. The obtained NPs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Crystallography (XRD), Transmission Electron Microscope (TEM) and Ultraviolet Visible (UV-VIS) spectroscopy, and the functional groups and morphology of the nanoparticle were elucidated. The resulting particle size was found to be 2.467 nm. NPs were evaluated using Cyclic Voltammetry (CV), Scan Rate (SR), and Differential Pulse Voltammetry (DPV) techniques for potential dopamine sensors application. According to the obtained DPV results, Limit of Detection (LOD) and Limit of Quantitation (LOQ) values are found to be 5.68 pM and 17.21 pM, respectively. It was also observed that AC supported PdCo nanoparticles obtained from C. verum extract sensed dopamine quite well. Besides, to examine the antibacterial properties of NPs, antibacterial analyzes were performed with Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus). It was observed that it showed good antibacterial properties against gram positive (S. aureus) and gram negative (E. coli) bacteria. The study gave important results in terms of the synthesis of bimetallic NPs using the green synthesis method and their usability in different areas. With this study, it was observed that a good antibacterial dopamine sensor were obtained with the successful biogenic synthesis of AC supported PdCo bimetallic NPs.


Subject(s)
Metal Nanoparticles , Staphylococcus aureus , Metal Nanoparticles/chemistry , Charcoal , Escherichia coli , Dopamine , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests , X-Ray Diffraction
4.
Environ Res ; 220: 115231, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36608760

ABSTRACT

Various impurities found nowadays in water can be detrimental to human health. This work focused on utilizing Fe3O4@MnO2 nanocomposite for cleaning organic contaminants from water, including rhodamine B (RhB) and Escherichia coli (E. coli). Analysis methods such as XRD, UV-vis, TEM, and FTIR were used to describe the nanocomposite. The results showed that the developed nanocomposite has good photocatalytic activity against pollutants in wastewater. The E. coli was destroyed after 90 min, and the RhB photodegradation rate was 75%. Moreover, the Fe3O4@MnO2 efficiency as a catalyst for producing hydrogen as an alternative energy source was tested. According to the calculations, the nanomaterial's turnover frequency, activation energy, enthalpy, and entropy are 1061.3 h-1, 28.93 kJ/mol, 26.38 kJ/mol, and -128.41 J/mol.K, respectively. Four reusability tests were completed, and the average reusability was 78%. The obtained data indicated the excellent potential for the developed Fe3O4@MnO2 nanomaterial to act as an adsorbent, thus representing an alternative to the classical depollution methods. This study showed that nanoparticles have a photocatalytic effect against pathogenic bacteria and RhB azo dye in polluted waters and offer an effective catalytic activity to produce hydrogen as an alternative energy source.


Subject(s)
Escherichia coli , Wastewater , Humans , Oxides , Hydrolysis , Manganese Compounds , Water , Coloring Agents , Textiles
5.
Environ Res ; 218: 114757, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36511326

ABSTRACT

This study aimed to synthesize Ag NPs as a green catalyst for photocatalytic activity and to examine their biological activities. It was determined that they have high activity in catalytic and biological activities. The green synthesis which is an environmentally friendly and inexpensive method was used to synthesize Ag-NPs using Linum usitatissimum as a reducing agent. Transmission electron microscopy (TEM), infrared to Fourier transform infrared (FTIR) spectroscopy, UV-Visible (UV-Vis) spectroscopy, and X-ray diffraction (XRD) were used to characterize the Ag NPs. In UV-Vis examination, Ag-NPs had intense peaks in the 435 nm region. The antibacterial activity of Ag NPs was investigated, and Ag NPs showed a high lethal effect against S. aureus, E. coli, B. subtilis, and MRSA. In addition, Ag NPs were tested for anticancer activity against the HT-29 colon cancer cell line, MDA-MB-231 breast cancer cell line, healthy cell line L929-Murine Fibroblast cell Lines, and MIA PaCa-2 human pancreatic cancer cell line at various concentrations (1-160 µg/mL) and showed a high anticancerogenic properties against MDA-MB-231 cells. Ag NPs showed the ability of DNA cleavage activity. Also, the antioxidant activity of Ag NPs against DPPH was found to be 80% approximately. Furthermore, the photocatalytic activity of Ag NPs against methylene blue (MB) was determined to be 67.13% at the 180th min. In addition, it was observed that biogenic Ag NPs have high electrocatalytic activity for hydrogen peroxide (H2O2) detection. In the sensor based on Ag NPs, linearity from 1 µM to 5 µM was observed with a detection limit (LOD) of 1.323 µM for H2O2. According to these results, we conclude that the biogenic Ag NPs synthesized using Linum usitatissimum extract can be developed as an efficient biological agent as an antibacterial and anticancer also can be used as a photocatalyst for industrial wastewater treatment to prevent wastewater pollution.


Subject(s)
Flax , Metal Nanoparticles , Animals , Humans , Mice , Hydrogen Peroxide , Staphylococcus aureus , Metal Nanoparticles/chemistry , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Microbial Sensitivity Tests
6.
Environ Res ; 216(Pt 4): 114668, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36397611

ABSTRACT

In this work, activated carbon-supported zinc oxide nanoparticles (ZnO@AC NPs) were studied using the thermal synthesis method. The activated carbon-supported zinc oxide catalyst was characterized by UV-Vis spectrometry techniques, Fourier Transform Infrared Spectrophotometer (FTIR), Transmissive electron microscopy (TEM), and X-ray diffraction (XRD) methods. XRD characterization measurements showed that the average size of the crystal NPs was 6.89 nm. According to the TEM analysis results, the nanoparticles' average size was 11.411 nm, and the particles had a spherical structure. The catalytic properties of the synthesized material were determined using the sodium borohydride methanolysis reaction. A kinetic study was performed regarding the effects of temperature, catalyst, and substrate concentration on the methanolysis reaction. Reusability experiments showed that the catalyst had excellent catalytic activity (85%), stability, and selectivity. As a result of the kinetic study, activation energy, enthalpy (ΔH), entropy (ΔS), and hydrogen production rate activation parameters were found to be 42.52 kJ/mol, 39.98 kJ/mol, -181.42 J/mol.K, 1257.69 mL/min. g, respectively. Also, the photocatalytic activity of ZnO@AC NPs was analyzed against Rhodamine B (RhB) dye, and the maximum degradation percentage was observed to be 76% at 120 min. This study aimed to develop the ZnO@AC NPs into an efficient photocatalyst to prevent industrial wastewater pollution and as a catalyst for hydrogen synthesis as an alternative energy source.


Subject(s)
Chitosan , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Charcoal , Metal Nanoparticles/chemistry , X-Ray Diffraction , Hydrogen , Spectroscopy, Fourier Transform Infrared
7.
Acta Cardiol Sin ; 39(5): 720-732, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37720408

ABSTRACT

Background: Chronic coronary syndrome (CCS) is one of the most life-restricting coronary artery diseases, and symptom relief is the main goal in CCS patients who suffer from angina. Objectives: To assess the potential benefits of device-guided breathing in CCS patients with angina in this randomized, controlled, single-blinded study. Methods: Fifty-one patients with CCS received device-guided breathing for 7 days/8 weeks. Exercise capacity [exercise stress test], cardiac function [transthoracic echocardiography], and angina severity [Canadian Cardiovascular Society Classification] were evaluated initially and after the training. Device-guided breathing was performed at the lowest resistance of the device (POWERbreathe® Classic LR) for the control group (n = 17). The low load training group (LLTG; n = 18) and high load training group (HLTG; n = 16) were trained at 30% and 50% of maximal inspiratory pressure. Baseline characteristics were compared using one-way ANOVA and Kruskal-Wallis test. Categorical data were compared using the chi-square test. ANCOVA was performed to compare changes between three groups. A p value < 0.05 was considered statistically significant. Results: Metabolic equivalent values were significantly improved in both HLTG and LLTG groups (p < 0.001, p = 0.003). The Duke treadmill score significantly improved and shifted to low-risk both in the HLTG (p < 0.001) and LLTG (p < 0.001) groups. Angina severity significantly alleviated after the training in both HLTG and LLTG groups (p < 0.001, p = 0.002). Conclusions: An 8-week long program of short-term respiratory muscle training provided positive gains in exercise capacity and angina severity in CCS patients with angina. The effects of long-term training programs on CCS patients should be investigated clinically because of the possibility of helping to decrease the need for invasive treatments.

8.
Anal Biochem ; 641: 114566, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35085547

ABSTRACT

Fungi can be used as a potent chemotherapeutic agent to treat various cancers. In current study acetone and methanol extracts of Terfezia claveryi, Terfezia boudieri, Terfezia olbiensis, Picoa lefebvrei, Picoa juniperi were used to assess total phenolic contents, antioxidant activity, ion-chelating impact, antimicrobial activity, the cytotoxic and protective effects. Both methanol and acetone extracts of T. boudieri had the highest FRAP and DPPH scavenging abilities. Dose-dependent increased ion-chelating impact of all tested truffles species was found. Extracts of T. boudieri, T. claveryi, and T. albiensis exhibited higher antimicrobial activities. T. claveryi and T. boudieri showed the highest protective effects against H2O2-induced genotoxicity (P < 0.05), in S. cerevisiae BY4741. The least protective effect was showed by the acetone extracts of T. olbiensis (144 ± 8); methanol extracts of P. lefebvrei (140 ± 8) and P. juniperi (140 ± 10). MCF 7 cells showed more sensitivity against to methanol extracts of T. boudieri at 10-100 µg/mL concentrations. HepG2 cells showed more sensitivity against the methanolic extracts of T. boudieri at both doses. Overall, P. lefebvrei and P. juniperi extracts had the least cytotoxic effects. The species of Terfezia exhibit significant protective effects against DNA damage and also have the potential of cytotoxicity effects.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Ascomycota/chemistry , Protective Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Cell Proliferation/drug effects , Cell Survival , Drug Screening Assays, Antitumor , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Hydrogen Peroxide/antagonists & inhibitors , Microbial Sensitivity Tests , Picrates/antagonists & inhibitors , Protective Agents/chemistry , Protective Agents/isolation & purification , Tumor Cells, Cultured
9.
Environ Res ; 206: 112622, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34958781

ABSTRACT

The critical environmental issues of antibiotic resistance and renewable energies supply urge researching materials synthesis and catalyst activity on hydrogen production processes. Aiming to analyse the antibacterial effect of platinum-silver (Ag-Pt) nanoparticles (NPs) and the catalyst effect on NaBH4 hydrolysis that can be used for hydrogen generation technology, in this work, Ag-Pt NPs were prepared using aqueous propolis extract. Various methods were used for the characterization (Uv-vis Spectroscopy, Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and X-ray diffraction Spectroscopy (XRD)). The antimicrobial activity of Ag-Pt bimetallic nanoparticles was evaluated in vitro by the microdilution method against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Staphylococcus epidermidis, and Serratia marcescens. The results confirmed the antimicrobial activity of bimetallic NPs Ag-Pt concentrations of (25, 50, and 100 µg/ml). A concentration of 100 µg/ml showed low bacterial viability varying between 22.58% and 29.67% for the six tested bacteria. For the catalyst activity on NaBH4 hydrolysis, the results showed high turnover factor (TOF) and low activation energy of 1208.57 h-1 and 25.61 kJ/mol, respectively, with high hydrogen yield under low temperature. Synthesized Ag-Pt NPs can have great potential for biological and hydrogen storage applications.


Subject(s)
Metal Nanoparticles , Propolis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hydrolysis , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Plant Extracts , Propolis/pharmacology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
10.
Environ Res ; 204(Pt A): 111897, 2022 03.
Article in English | MEDLINE | ID: mdl-34418450

ABSTRACT

In this study, we tried to enlighten the structure of zinc oxide nanoparticles (ZnO NPs) obtained from Thymbra Spicata L. plant by using green synthesis method in various ways. Some properties of zinc oxide nanoparticles were determined by using the characterization methods that scanning electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX), fouirer transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ultraviolet visible spectroscopy (UV-Vis) spectroscopy methods. The detected Zn nanoparticle sizes were determined to be between 6.5 nm and 7.5 nm. In addition to these studies, we investigated the antimicrobial effects of zinc oxide nanoparticles obtained by green synthesis against some pathogens. According to the results, it was seen that zinc oxide nanoparticles formed zones with a diameter of 16.3 mm, 10.25 mm, 13 mm and 10.2 mm, respectively, against Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25952, Pseudomonas aeruginosa ATCC 27853 bacteria and Candida albicans ATTC 90028 fungus, respectively. However, the radical quenching activity (DPPH) of the nanoparticles (Ts-ZnONP (79.67%)) was determined to be quite good compared to the positive control BHA. In addition, it is seen that the protective effect of ZnO NPs against DNA damage increases depending on the concentration. At a concentration of 100 mg/L, the DNA damage inhibitory effect was found to be maximum. In line with the comprehensive results, it was determined that the zinc oxide nanoparticles obtained with the green synthesis method have the potential of use in a wide variety of fields.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Anti-Bacterial Agents , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
11.
Environ Res ; 204(Pt D): 112347, 2022 03.
Article in English | MEDLINE | ID: mdl-34767821

ABSTRACT

The science world advancing day by day contributes to living systems in many areas with the development of nanotechnology. Besides being easily obtained from plants, the advantages it brings increase the importance of nanotechnology. Environmentally friendly, economical, and compatible with plants are just a few of the advantages it brings. Silver metal is one of the most preferred active ingredients in nanoparticle synthesis. Arum italicum is used in the treatment of various diseases in the health sector due to the structures it contains. In our study, nanoparticle synthesis was made by using Ag metal with Arum italicum plant. Then, the antimicrobial, DNA damage prevention and DPPH radical quenching activity of Ag NPs/Ai nanoparticles were investigated. The interaction of the plant with Ag, analysis by X-ray diffraction (XRD), UV visible spectrophotometer (UV-vis), scanning electron microscope and energy dispersive X-ray (SEM-EDX), Fourier-converted infrared spectroscopy (FT-IR) methods has been done. It has been observed that Ag NPs/Ai clusters formed by Arum italicum with Ag have an antibacterial effect against Bacillus subtilis, Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli pathogens. However, an antifungal effect hasn't been observed against Candida albicans fungus. Pseudomonas aeruginosa bacteria exerted a stronger effect than an antibiotic. It is seen that Ag NPs/Ai has a protective and anti-damage effect against DNA damage. The antioxidant effect of Ag NPs/Ai is remarkable when DPPH radical quenching activity is compared to positive control BHA and BHT.


Subject(s)
Arum , Metal Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Silver/chemistry , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
12.
Environ Res ; 204(Pt D): 112345, 2022 03.
Article in English | MEDLINE | ID: mdl-34774300

ABSTRACT

Goiter, abnormal enlargement of the thyroid gland, is a significant worldwide public health problem. Iodine deficiency is known as the most common cause. Iodine is actively transported as iodide ion (I-) using Sodium Iodide Symporter (NIS) and sufficient blocking of I- transportation prevents the synthesis of thyroid hormones. The transportation can be blocked by some polyatomic anions known as I- uptake inhibitors. Perchlorate (ClO4-), thiocyanate (SCN-) and nitrate (NO3-) are reported as the major I- uptake inhibitors and exposure could be through various routes. Drinking water is an important exposure route. Since water is essential to sustain life, drinking water safety is very important for the protection of public health. However, as a result of natural and human-based processes, water can be contaminated and contamination of drinking water is a global food safety problem due to causing significant health and environmental problemsIn that context, this study aims to determine exposure levels to I- uptake inhibitors that arise from drinking waters at five different districts in Antalya, Turkey. Collected water samples contained NO3- and ClO4- in the range of 0.86-47.42 mg/L and

Subject(s)
Drinking Water , Iodine , Adolescent , Adult , Aged , Child , Child, Preschool , Humans , Iodides , Middle Aged , Nitrates/analysis , Perchlorates , Thyroid Gland , Young Adult
13.
Environ Res ; 204(Pt D): 112363, 2022 03.
Article in English | MEDLINE | ID: mdl-34774505

ABSTRACT

This study aims to investigate the antidiabetic, antimicrobial, DNA damage, and lipid peroxidation prevention activity of ZnO NPs/Rr formed as a result of the interaction of Rheum ribes (R.ribes) plant with ZnO. The ZnO NPs/Rr obtained as a result of the reaction were confirmed using high-reliability characterization methods. According to the data obtained as a result of the study, it is seen that the activity of ZnO NPs/Rr to prevent lipid peroxidation is quite strong. Lipid peroxidation inhibition activity of ZnO NPs/Rr at the highest concentration of 250 µg/ml was calculated as % 89.1028. It was observed that ZnO NPs/Rr prevented DNA damage by % 92.1240 at the highest concentration of 100 µg/ml. It was determined that the antidiabetic effect of ZnO NPs/Rr formed by ZnO of R. ribes plant, which is used as a medicinal plant as an antidiabetic, was significant. It appears to have a strong antidiabetic property compared to the positive control acarbose. In our current study, it was observed that ZnO NPs/Rr formed zones ranging from 8 ± 3.0 to 21 ± 4.5 against Gram-positive and Gram-negative microorganisms. It has been determined that ZnO nanoparticles have an antibacterial effect.


Subject(s)
Metal Nanoparticles , Rheum , Ribes , Zinc Oxide , Anti-Bacterial Agents/pharmacology , DNA Damage , Hypoglycemic Agents/pharmacology , Lipid Peroxidation , Metal Nanoparticles/toxicity , Plant Extracts/pharmacology , Reproducibility of Results , Zinc Oxide/pharmacology
14.
Environ Res ; 209: 112766, 2022 06.
Article in English | MEDLINE | ID: mdl-35085567

ABSTRACT

For the simultaneous preconcentrations of Cu(II) and Mn(II), a novel preconcentration technique was developed and described. Bacillus cereus loaded magnetic É£-Fe2O3 nanoparticles were prepared and used as support materials on solid-phase extraction procedure. Important experimental parameters were investigated in details and pH 6.0, 3 mL min-1 of flow rate, 5 mL of 1 mol L-1 of HCl as eluent, 200 mg of biomass, and 200 mg of magnetic É£-Fe2O3 nanoparticles as support material was found as the best conditions. The preconcentrations factor were found to be 80 for Cu (II) and Mn(II). It was confirmed by the results that SPE columns could be used in 32 cycles. The LOD values calculated for Cu (II) and Mn (II) were 0.09 and 0.08 ng mL-1, respectively. The RSD values found were less than 3.4%. The extraction recoveries were achieved as higher than 98%. The biosorption capacities of Cu (II), and Mn (II) were 26.0 mg g-1, 30.3 mg g-1 respectively. The approach devised for analyzing analyte concentrations in food samples proved to be successful.


Subject(s)
Bacillus cereus , Nanoparticles , Adsorption , Magnetic Phenomena , Solid Phase Extraction/methods
15.
Environ Res ; 208: 112708, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35026187

ABSTRACT

BACKGROUND: Green synthesis is an effective and friendly method for the environment, especially in recent years has been used in many areas. It finds application opportunities in many fields such as physics, chemistry, electronics, food, and especially health and is the subject of intensive studies in this field. OBJECTIVES: The synthesized Pt-Pd NPs were aimed to be used as a bio-based photocatalyst under sunlight to prevent wastewater pollution. In addition, it is aimed to use Pt-Pd NPs as biological agents in different applications in the future. METHODS: In this study, the platinum-palladium nanoparticles were synthesized by the extract of Hibiscus sabdariffa, the characterization of the nanoparticles was carried out by different methods (ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), infrared transform spectroscopy atomic force microscopy (AFM), and ray diffraction (XRD) analysis). And we discussed several different parameters related to human health by obtaining platinum-palladium bimetallic nanoparticles (Pt-Pd NPs) with a green synthesis method. These parameters are antioxidant properties (total phenolic, flavonoid, and DPPH scavenging activity), antibacterial activity, and lipid peroxidation inhibition activity. Gallic acid was used as standard phenolic, and quercetin was used as standard flavonoid reagents. The newly synthesized Hibiscus sabdariffa mediated green synthesized Pt-Pd NPs were compared with gram-positive and gram-negative bacteria, the high antibacterial activity was shown by gram-positive bacteria. The photodegradation of Pt-Pd NPs was carried out against MB dye for 180 min. RESULTS: TEM results show that the average size of Pt-Pd NPs is around 4.40 nm. The total amount of phenolic compounds contained in 0.2 mg/ml of Pt-Pd NPs was equivalent to 14.962 ± 7.890 µg/ml gallic acid and the total amount of flavonoid component was found to be equal to 28.9986 ± 0.204 µg/ml quercetin. Hibiscus sabdariffa mediated green synthesized Pt-Pd NPs was found to have very effective for lipid peroxidation inhibition activity in the FeCl2-H2O2 system. The maximum DPPH scavenging activity was determined as 97.35% at 200 µg/ml. The photocatalytic activity of Pt-Pd NPs was analysed against Methylene blue (MB) and the maximum degradation percentage was observed to be 83.46% at 180 min. CONCLUSIONS: The biogenic Pt-Pd NPs showed a high effective photocatalytic and biological activity.


Subject(s)
Environmental Pollutants , Metal Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Hydrogen Peroxide , Lipid Peroxidation , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Palladium , Photolysis , Plant Extracts/pharmacology , Wastewater , X-Ray Diffraction
16.
Environ Res ; 207: 112231, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34695434

ABSTRACT

An ecofriendly preconcentration method was developed based on the use of Geobacillus galactosidasius sp. nov immobilized on Amberlite XAD-4 as an adsorbent for the preconcentrations of Hg and Sn. SEM-EDX performed for the investigation of surface functionality and morphology. The detailed investigations of factors such as pH of the solution, flow rate, interfering ions and sample volume have been thanks to the optimization of the pre-concentration system. The optimum pHs were found as 5.0-7.0 for Hg and Sn and also the optimum flow rates were determined as 2 mL min-1 for recovery of Hg and Sn. Under the best experimental conditions, limits of detections (LOD) were found as 0.53 ng mL-1 for Hg and 0.27 ng mL-1 for Sn. RSDs were calculated as 8.2% for Hg and 6.9% for Sn. The process was validated to use certified references (fish samples). ICP-OES was used to measure the levels of Hg and Sn in various real meal patterns after the devised technique was used. Concentrations of Hg and Sn were quantitively measured on gluten-free biscuit, flour, rice, Tuna fish, meat, chicken meat, potato, chocolate, coffee, tap water, energy drink and mineral water samples with low RSD. The developed method emerges as an innovative technology that will eliminate the low cost and toxic effect.


Subject(s)
Mercury , Solid Phase Extraction , Ions , Solid Phase Extraction/methods
17.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408592

ABSTRACT

The title compound was synthesized and structurally characterized. Theoretical IR, NMR (with the GIAO technique), UV, and nonlinear optical properties (NLO) in four different solvents were calculated for the compound. The calculated HOMO-LUMO energies using time-dependent (TD) DFT revealed that charge transfer occurs within the molecule, and probable transitions in the four solvents were identified. The in silico absorption, distribution, metabolism, and excretion (ADME) analysis was performed in order to determine some physicochemical, lipophilicity, water solubility, pharmacokinetics, drug-likeness, and medicinal properties of the molecule. Finally, molecular docking calculation was performed, and the results were evaluated in detail.


Subject(s)
Spectrum Analysis, Raman , Vibration , Hydrazines , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Quantum Theory , Solvents/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Triazoles
18.
Anal Biochem ; 617: 114122, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33515499

ABSTRACT

In this study, we present an environmental friend and easy procedure for simultaneous preconcentration of Cr(III), Hg(II) and Zn(II) by solid-phase extraction before their determination by inductively coupled plasma optical emission spectrometry. Armillae mellea immobilized nanodiamond was used as sorbent. During the study, critical parameters influencing the extraction performance were investigated in detail. The best parameters were found as pH 5.0, 2.0 mL min-1 of flow rate, 200 mg of Armillae mellea, 300 mL of sample volume. LOD values were found as 0.025, 0.13 and 0.038 ng mL-1, respectively for Cr(III), Hg(II) and Zn(II). By applying the developed procedure, sensitivities of ICP-OES were improved for 60 fold for Cr(III), Hg(II) and Zn(II). Their concentrations in different food samples were measured after microwave digestion and solid-phase extraction.


Subject(s)
Chromium/chemistry , Mercury/chemistry , Nanodiamonds/chemistry , Zinc/chemistry , Solid Phase Extraction
19.
Nanotechnology ; 32(32)2021 May 21.
Article in English | MEDLINE | ID: mdl-33946059

ABSTRACT

Binary transition metal oxides with encouraging electrocatalyst properties have been suggested as electrode materials for supercapacitors and methanol oxidation. Hence, in this work, a binary mixed metal oxide based on nickel and manganese (MnNi2O4) and its hybrid with reduced graphene oxide were synthesized by a one-step hydrothermal method. After physical and morphological characterization, the potential of these nanostructures was investigated for use as supercapacitor electrodes and methanol electro-oxidation. The results of the electrochemical analysis showed a substantial effect of adding rGO to the MnNi2O4. The MnNi2O4/rGO hybrid electrode supercapacitor exhibited good stability of 93% after 2000 consecutive CV cycles and a specific capacitance of 575 F g-1at the current density of 0.5 A g-1. Furthermore, the application of this hybrid nanomaterial in the methanol electro-oxidation reaction (MOR) indicated its appropriate electrochemical efficiency and stability in methanol oxidation. Our results show that MnNi2O4/rGO can be considered as a promising electrode material for energy applications.

20.
Environ Res ; 195: 110809, 2021 04.
Article in English | MEDLINE | ID: mdl-33515581

ABSTRACT

In the present study, a novel 1-butyl-3-methylimidazolium bromide (BmImBr) impregnated chitosan beads were prepared and characterized using different methods, including XRD, FT-IR, EDX, SEM and BET. The FTIR analysis revealed that the BmImBr was successfully conjugated with the chitosan in the beads structure. The prepared beads were used as an efficient sorbent for the fast removal of methylene blue, as cationic dye model, from aqueous solution, whereas just 25 min was required to reach 86% removal efficiency. The increasing of BmImBr amount improved the adsorption performance of prepared beads. Also, it was found that the dye can be higher adsorbed on the beads surface by increasing the sorbent dosage and pH of solution, while the optimum dosage and pH were obtained 3 mg/L and 11, respectively. The kinetic study showed that the MB adsorption onto the CS-BmImBr beads follows the pseudo-fist order model and the intrinsic penetration controls the adsorption process. The properties of prepared chitosan- BmImBr IL conjugation confirmed that it can be exploited as an efficient adsorbent in the wastewater treatment.


Subject(s)
Chitosan , Nanostructures , Water Pollutants, Chemical , Adsorption , Hydrogels , Hydrogen-Ion Concentration , Imidazoles , Kinetics , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL