Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nucleic Acids Res ; 40(6): 2432-44, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22123739

ABSTRACT

The precise nature of antisense transcripts in eukaryotes such as Saccharomyces cerevisiae remains elusive. Here we show that the 3' regions of genes possess a promoter architecture, including a pre-initiation complex (PIC), which mirrors that at the 5' region and which is much more pronounced at genes with a defined antisense transcript. Remarkably, for genes with an antisense transcript, average levels of PIC components at the 3' region are ∼60% of those at the 5' region. Moreover, at these genes, average levels of nascent antisense transcription are ∼45% of sense transcription. We find that this 3' promoter architecture persists for highly transcribed antisense transcripts where there are only low levels of transcription in the divergent sense direction, suggesting that the 3' regions of genes can drive antisense transcription independent of divergent sense transcription. To validate this, we insert short 3' regions into the middle of other genes and find that they are capable of both initiating antisense transcripts and terminating sense transcripts. Our results suggest that antisense transcription can be regulated independently of divergent sense transcription in a PIC-dependent manner and we propose that regulated production of antisense transcripts represents a fundamental and widespread component of gene regulation.


Subject(s)
Gene Expression Regulation, Fungal , RNA, Antisense/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , TATA-Box Binding Protein/metabolism , Transcription Factor TFIIB/metabolism , Transcription, Genetic , 3' Flanking Region , 5' Flanking Region , Galactokinase/genetics , Promoter Regions, Genetic , RNA, Antisense/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Terminator Regions, Genetic , Trans-Activators/genetics
2.
Nature ; 445(7128): 666-70, 2007 Feb 08.
Article in English | MEDLINE | ID: mdl-17237763

ABSTRACT

Alternative promoters within the same gene are a general phenomenon in gene expression. Mechanisms of their selective regulation vary from one gene to another and are still poorly understood. Here we show that in quiescent cells the mechanism of transcriptional repression of the major promoter of the gene encoding dihydrofolate reductase depends on a non-coding transcript initiated from the upstream minor promoter and involves both the direct interaction of the RNA and promoter-specific interference. The specificity and efficiency of repression is ensured by the formation of a stable complex between non-coding RNA and the major promoter, direct interaction of the non-coding RNA with the general transcription factor IIB and dissociation of the preinitiation complex from the major promoter. By using in vivo and in vitro assays such as inducible and reconstituted transcription, RNA bandshifts, RNA interference, chromatin immunoprecipitation and RNA immunoprecipitation, we show that the regulatory transcript produced from the minor promoter has a critical function in an epigenetic mechanism of promoter-specific transcriptional repression.


Subject(s)
Gene Expression Regulation, Enzymologic/genetics , Gene Silencing , Promoter Regions, Genetic/genetics , RNA, Untranslated/genetics , Tetrahydrofolate Dehydrogenase/genetics , Transcription, Genetic/genetics , Epistasis, Genetic , Humans , RNA, Untranslated/metabolism , Substrate Specificity , TATA-Box Binding Protein/metabolism , Transcription Factor TFIIB/metabolism
3.
Nat Commun ; 9(1): 5375, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30560907

ABSTRACT

During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes.


Subject(s)
Cell Lineage/physiology , Gene Expression Regulation, Developmental/physiology , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Transcription Factors/metabolism , Animals , Cell Differentiation/physiology , Cell Line , Cell Separation/methods , Embryo, Mammalian , Flow Cytometry/methods , Histone Code/physiology , Mesoderm/cytology , Mesoderm/physiology , Mice , Mouse Embryonic Stem Cells , Nuclear Proteins/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/metabolism , RNA, Small Interfering/metabolism , Repressor Proteins/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Transcription Factors/genetics
4.
Elife ; 3: e03635, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25407679

ABSTRACT

In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.


Subject(s)
Gene Expression Regulation, Fungal , Multigene Family , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Carbon/pharmacology , Genes, Fungal , Genetic Loci , Metabolic Networks and Pathways/drug effects , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL