Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612471

ABSTRACT

Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV-1 , United States , Humans , United States Food and Drug Administration , Apoptosis , Cell Division
2.
Mol Cell Biochem ; 478(5): 1099-1108, 2023 May.
Article in English | MEDLINE | ID: mdl-36219355

ABSTRACT

Glioma is the fast-growing, aggressive, and prevalent brain cancer with a great level of morbidity and mortality. Current therapy is usually found insufficient for glioma treatment. In the course of our research attempting to identify effective anti-glioma agents, three benzothiazole derivatives (1-3) were examined on U251 glioma cells. Among these derivatives, compound 3 was found to have the strongest cytotoxic effect on glioma cells with an IC50 value of 9.84 ± 0.64 µM in reference to cisplatin (IC50 = 8.41 ± 1.27 µM). Further mechanism of anti-glioma effects of compound 3 was characterized by the determination of its apoptotic effects in glioma cells and DNA cleaving capacity. Compound 3 caused a significant apoptotic death of U251 cell line. Besides, this compound cleaved DNA with FeSO4, H2O2 and ascorbic acid system. Molecular docking results also showed that compound 3 possessed a significant binding potential to DNA via important π-π stacking interaction with DG-16. Some pharmacokinetic determinants of compound 3 complied with standard limits making it as an efficient bioavailable anti-glioma drug candidate for upcoming exploration.


Subject(s)
Antineoplastic Agents , Glioma , Humans , Molecular Docking Simulation , Hydrogen Peroxide/pharmacology , Cell Line, Tumor , Glioma/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Cell Proliferation
3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36768971

ABSTRACT

Targeted therapies have come into prominence in the ongoing battle against non-small cell lung cancer (NSCLC) because of the shortcomings of traditional chemotherapy. In this context, indole-based small molecules, which were synthesized efficiently, were subjected to an in vitro colorimetric assay to evaluate their cyclooxygenase (COX) inhibitory profiles. Compounds 3b and 4a were found to be the most selective COX-1 inhibitors in this series with IC50 values of 8.90 µM and 10.00 µM, respectively. In vitro and in vivo assays were performed to evaluate their anti-NSCLC and anti-inflammatory action, respectively. 2-(1H-Indol-3-yl)-N'-(4-morpholinobenzylidene)acetohydrazide (3b) showed selective cytotoxic activity against A549 human lung adenocarcinoma cells through apoptosis induction and Akt inhibition. The in vivo experimental data revealed that compound 3b decreased the serum myeloperoxidase and nitric oxide levels, pointing out its anti-inflammatory action. Moreover, compound 3b diminished the serum aminotransferase (particularly aspartate aminotransferase) levels. Based on the in vitro and in vivo experimental data, compound 3b stands out as a lead anti-NSCLC agent endowed with in vivo anti-inflammatory action, acting as a dual COX-1 and Akt inhibitor.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Angiogenesis Inhibitors/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Molecular Docking Simulation , Molecular Structure , Proto-Oncogene Proteins c-akt , Structure-Activity Relationship , Cyclooxygenase 1/metabolism
4.
Arch Pharm (Weinheim) ; 355(9): e2200136, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35606682

ABSTRACT

In an endeavor to identify potent anti-inflammatory agents, new thiosemicarbazones (TSCs) incorporated into a diaryl ether framework (2a-2l) were prepared and screened for their in vitro inhibitory effects on cyclooxygenases (COXs). 4-[4-(Piperidin-1-ylsulfonyl)phenyl]-1-[4-(4-cyanophenoxy)benzylidene]thiosemicarbazide (2c) was the most potent and selective COX-1 inhibitor in this series, with an IC50 value of 1.89 ± 0.04 µM. On the other hand, 4-[4-(piperidin-1-ylsulfonyl)phenyl]-1-[4-(4-nitrophenoxy)benzylidene]thiosemicarbazide (2b) was identified as a nonselective COX inhibitor (COX-1 IC50 = 13.44 ± 0.65 µM, COX-2 IC50 = 12.60 ± 0.78 µM). Based on molecular docking studies, the diaryl ether and the TSC groups serve as crucial moieties for interactions with pivotal amino acid residues in the active sites of COXs. According to MTT test, compounds 2b and 2c showed low cytotoxic activity toward NIH/3T3 cells. Their in vivo anti-inflammatory and antioxidant potencies were also assessed using the lipopolysaccharide-induced sepsis model. Compounds 2b and 2c diminished high-sensitivity C-reactive protein, myeloperoxidase, nitric oxide, and malondialdehyde levels. Both compounds also caused a significant decrease in aspartate aminotransferase levels as well as alanine aminotransferase levels. In silico pharmacokinetic studies suggest that compounds 2b and 2c possess favorable drug-likeness and oral bioavailability. It can be concluded that these compounds may act as orally bioavailable anti-inflammatory and antioxidant agents.


Subject(s)
Thiosemicarbazones , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Ethers , Mice , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiosemicarbazones/pharmacology
5.
Int J Mol Sci ; 23(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35269543

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Combined Modality Therapy/methods , Deep Brain Stimulation , Drug Discovery , Edaravone/therapeutic use , Humans , Induced Pluripotent Stem Cells/transplantation , Riluzole/therapeutic use
6.
Molecules ; 27(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35056800

ABSTRACT

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death throughout the world. Due to the shortcomings of traditional chemotherapy, targeted therapies have come into prominence for the management of NSCLC. In particular, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy has emerged as a first-line therapy for NSCLC patients with EGFR-activating mutations. In this context, new indenopyrazoles, which were prepared by an efficient microwave-assisted method, were subjected to in silico and in vitro assays to evaluate their potency as EGFR TK-targeted anti-NSCLC agents. Compound 4 was the most promising antitumor agent towards A549 human lung adenocarcinoma cells, with an IC50 value of 6.13 µM compared to erlotinib (IC50 = 19.67 µM). Based on its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), it can be concluded that compound 4 exerts selective antitumor action. This compound also inhibited EGFR TK with an IC50 value of 17.58 µM compared to erlotinib (IC50 = 0.04 µM) and induced apoptosis (56.30%). Taking into account in silico and in vitro data, compound 4 stands out as a potential EGFR TKI for the treatment of NSCLC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Computer Simulation , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/pharmacology , Humans , Leukocytes, Mononuclear/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics
7.
Molecules ; 28(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36615273

ABSTRACT

Colorectal cancer (CRC), breast cancer, and chronic myeloid leukemia (CML) are life-threatening malignancies worldwide. Although potent therapeutic and screening strategies have been developed so far, these cancer types are still major public health problems. Therefore, the exploration of more potent and selective new agents is urgently required for the treatment of these cancers. Quinones represent one of the most important structures in anticancer drug discovery. We have previously identified a series of quinone-based compounds (ABQ-1-17) as anti-CML agents. In the current work, ABQ-3 was taken to the National Cancer Institute (NCI) for screening to determine its in vitro antiproliferative effects against a large panel of human tumor cell lines at five doses. ABQ-3 revealed significant growth inhibition against HCT-116 CRC and MCF-7 breast cancer cells with 2.00 µM and 2.35 µM GI50 values, respectively. The MTT test also showed that ABQ-3 possessed anticancer effects towards HCT-116 and MCF-7 cells with IC50 values of 5.22 ± 2.41 µM and 7.46 ± 2.76 µM, respectively. Further experiments indicated that ABQ-3 induced apoptosis in both cell lines, and molecular docking studies explicitly suggested that ABQ-3 exhibited DNA binding in a similar fashion to previously reported compounds. Based on in silico pharmacokinetic prediction, ABQ-3 might display drug-like features enabling this compound to become a lead molecule for future studies.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Cell Proliferation , Cell Line, Tumor , Quinones/pharmacology , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug
8.
Molecules ; 27(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163957

ABSTRACT

Plants have paved the way for the attainment of molecules with a wide-range of biological activities. However, plant products occasionally show low biological activities and/or poor pharmacokinetic properties. In that case, development of their derivatives as drugs from the plant world has been actively performed. As plant products, plastoquinones (PQs) have been of high importance in anticancer drug design and discovery; we have previously evaluated and reported the potential cytotoxic effects of a series of PQ analogs. Among these analogs, PQ2, PQ3 and PQ10 were selected for National Cancer Institute (NCI) for in vitro screening of anticancer activity against a wide range of cancer cell lines. The apparent superior anticancer potency of PQ2 on the HCT-116 colorectal cancer cell line than that of PQ3 and PQ10 compared to other tested cell lines has encouraged us to perform further mechanistic studies to enlighten the mode of anti-colorectal cancer action of PQ2. For this purpose, its apoptotic effects on the HCT-116 cell line, DNA binding capacity and several crucial pharmacokinetic properties were investigated. Initially, MTT assay was conducted for PQ2 at different concentrations against HCT-116 cells. Results indicated that PQ2 exhibited significant cytotoxicity in HCT-116 cells with an IC50 value of 4.97 ± 1.93 µM compared to cisplatin (IC50 = 26.65 ± 7.85 µM). Moreover, apoptotic effects of PQ2 on HCT-116 cells were investigated by the annexin V/ethidium homodimer III staining method and PQ2 significantly induced apoptosis in HCT-116 cells compared to cisplatin. Based on the potent DNA cleavage capacity of PQ2, molecular docking studies were conducted in the minor groove of the double helix of DNA and PQ2 presented a key hydrogen bonding through its methoxy moiety. Overall, both in vitro and in silico studies indicated that effective, orally bioavailable drug-like PQ2 attracted attention for colorectal cancer treatment. The most important point to emerge from this study is that appropriate derivatization of a plant product leads to unique biologically active compounds.


Subject(s)
Colorectal Neoplasms/drug therapy , Plastoquinone/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Computer Simulation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Plastoquinone/metabolism , Structure-Activity Relationship
9.
Bioorg Chem ; 114: 105160, 2021 09.
Article in English | MEDLINE | ID: mdl-34328861

ABSTRACT

Literature conclusively shows that one of the quinolinequinone analogs (6-anilino-5,8-quinolinequinone), referred to as LY83583 hereafter, an inhibitor of guanylyl cyclase, was used as the inhibitor of the cell proliferation in cancer cells. In the present work, a series of analogs of the LY83583 containing alkoxy group(s) in aminophenyl ring (AQQ1-15) were designed and synthesized via a two-step route and evaluated for their in vitro cytotoxic activity against four different cancer cell lines (K562, Jurkat, MT-2, and HeLa) and human peripheral blood mononuclear cells (PBMCs) by MTT assay. The analog (AQQ13) was identified to possess the most potent cytotoxic activity against K562 human chronic myelogenous (CML) cell line (IC50 = 0.59 ± 0.07 µM) with significant selectivity (SI = 4.51) compared to imatinib (IC50 = 5.46 ± 0.85 µM; SI = 4.60). Based on its superior cytotoxic activity, the analog AQQ13 was selected for further mechanistic studies including determination of its apoptotic effects on K562 cell line via annexin V/ethidium homodimer III staining potency, ABL1 kinase inhibitory activity, and DNA cleaving capacity. Results ascertained that the analog AQQ13 induced apoptosis in K562 cell line with notable DNA-cleaving activity. However, AQQ13 demonstrated weak ABL1 inhibition indicating the correlation between anti-K562 and anti-ABL1 activities. In continuance, respectively conducted in silico molecular docking and Absorption, Distribution, Metabolism, and Excretion (ADME) studies drew attention to enhanced binding interactions of AQQ13 towards DNA and its high compatibility with the potential limits of specified pharmacokinetic parameters making it as a potential anti-leukemic drug candidate. Our findings may provide a new insight for further development of novel quinolinequinone-based anticancer analogs against CML.


Subject(s)
Aminoquinolines/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Aminoquinolines/chemical synthesis , Aminoquinolines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , DNA Cleavage , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-abl/metabolism , Structure-Activity Relationship
10.
Arch Pharm (Weinheim) ; 354(1): e2000235, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32930414

ABSTRACT

In an attempt to identify potential anticancer agents for non-small-cell lung cancer (NSCLC) targeting sirtuin 1 (SIRT1), the synthesis of a new series of benzoxazoles (3a - i) was carried out through a facile and versatile synthetic route. The compounds were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and NIH/3T3 mouse embryonic fibroblast cells using the MTT assay. 2-[(5-Nitro-1H-benzimidazol-2-yl)thio]-N-(2-methylbenzoxazol-5-yl)acetamide (3e) and 2-[(5-chloro-1H-benzimidazol-2-yl)thio]-N-(2-methylbenzoxazol-5-yl)acetamide (3g) were the most potent and selective anticancer agents in this series against the A549 cell line, with IC50 values of 46.66 ± 11.54 and 55.00 ± 5.00 µM, respectively. The flow cytometry-based apoptosis detection assay was performed to determine their effects on apoptosis in A549 cells. Both compounds induced apoptosis in a dose-dependent manner. The effects of compounds 3e and 3g on SIRT1 activity were determined. On the basis of in vitro studies, it was observed that compound 3g caused a significant decrease in SIRT1 levels in a dose-dependent manner, whereas compound 3e increased the SIRT1 levels. According to molecular docking studies, the substantial alteration in the type of action could be attributed to the difference between the interactions of compounds 3e and 3g with the same residues in the active site of SIRT1 (PDB code: 4IG9). On the basis of in silico ADME (absorption, distribution, metabolism, and excretion) studies, these compounds are predicted to possess favorable ADME profiles. According to the in vitro and in silico studies, compounds 3e and 3g, small-molecule SIRT1 modulators, were identified as potential orally bioavailable anticancer agents for the targeted therapy of NSCLC.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , A549 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Carcinoma, Non-Small-Cell Lung/pathology , Computer Simulation , Dose-Response Relationship, Drug , Drug Design , Humans , Lung Neoplasms/pathology , Mice , Molecular Targeted Therapy , NIH 3T3 Cells , Sirtuin 1/drug effects , Sirtuin 1/metabolism , Structure-Activity Relationship
11.
Arch Pharm (Weinheim) ; 354(12): e2100294, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34569655

ABSTRACT

New hybrid thiazolyl-pyrazoline derivatives (4a-k) were obtained through a facile and versatile synthetic procedure, and their inhibitory effects on the human carbonic anhydrase (hCA) isoforms I and II as well as on acetylcholinesterase (AChE) were determined. All new thiazolyl-pyrazolines showed activity at nanomolar levels as hCA I, hCA II, and AChE inhibitors, with KI values in the range of 13.35-63.79, 7.01-115.80, and 17.89-48.05 nM, respectively. 1-[4-(4-Cyanophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4f) and 1-(4-phenylthiazol-2-yl)-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4a) against hCAs and 1-[4-(4-chlorophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4d) and 1-[4-(4-nitrophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4b) against AChE were identified as highly potent inhibitors, superior to the standard drugs, acetazolamide and tacrine, respectively. Compounds 4a-k were also evaluated for their cytotoxic effects on the L929 mouse fibroblast (normal) cell line. Moreover, a comprehensive ligand-receptor interaction prediction was performed using the ADME-Tox, Glide XP, and MM-GBSA modules of the Schrödinger Small-Molecule Drug Discovery Suite to elucidate the potential binding modes of the new hybrid inhibitors against these metabolic enzymes.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Cholinesterase Inhibitors/pharmacology , Pyrazoles/pharmacology , Thiazoles/pharmacology , Acetazolamide/pharmacology , Animals , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Cell Line , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Mice , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , Tacrine/pharmacology , Thiazoles/chemical synthesis , Thiazoles/chemistry
12.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681605

ABSTRACT

Glioma, particularly its most malignant form, glioblastoma multiforme (GBM), is the most common and aggressive malignant central nervous system tumor. The drawbacks of the current chemotherapy for GBM have aroused curiosity in the search for targeted therapies. Aberrantly overexpressed epidermal growth factor receptor (EGFR) in GBM results in poor prognosis, low survival rates, poor responses to therapy and recurrence, and therefore EGFR-targeted therapy stands out as a promising approach for the treatment of gliomas. In this context, a series of pentacyclic triterpene analogues were subjected to in vitro and in silico assays, which were conducted to assess their potency as EGFR-targeted anti-glioma agents. In particular, compound 10 was the most potent anti-glioma agent with an IC50 value of 5.82 µM towards U251 human glioblastoma cells. Taking into account its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), compound 10 exerts selective antitumor action towards Jurkat human leukemic T-cells. This compound also induced apoptosis and inhibited EGFR with an IC50 value of 9.43 µM compared to erlotinib (IC50 = 0.06 µM). Based on in vitro and in silico data, compound 10 stands out as a potential orally bioavailable EGFR-targeted anti-glioma agent endowed with the ability to cross the blood-brain barrier (BBB).


Subject(s)
Pentacyclic Triterpenes/chemistry , Apoptosis/drug effects , Binding Sites , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Glioma/metabolism , Glioma/pathology , Half-Life , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Molecular Docking Simulation , Pentacyclic Triterpenes/metabolism , Pentacyclic Triterpenes/pharmacology
13.
Bioorg Chem ; 102: 104110, 2020 09.
Article in English | MEDLINE | ID: mdl-32739480

ABSTRACT

Aldose reductase (AR) catalyzes the NADPH-dependent reduction of glucose to sorbitol in the polyol pathway, which plays an important role in the development of diabetic complications including cataract, retinopathy, nephropathy, and neuropathy. AR has been considered as an important target to heal these long-term diabetic complications and for this reason the development of new AR inhibitors is an important approach in modern medicinal chemistry. In the current study, new 4-aryl-2-[2-((3,4-dihydro-2H-1,5-benzodioxepine-7-yl)methylene)hydrazinyl]thiazole derivatives (1-12) were synthesized and screened for their inhibitory effects on AR which was purified by diverse chromatographic methods with a yield of 1.40% and a specific activity of 2.00 EU/mg. All compounds were determined as promising AR inhibitors with the Ki values in the range of 0.018 ± 0.005 µM-3.746 ± 1.321 µM compared to the quercetin (Ki = 7.025 ± 1.780 µM). In particular, 4-(4-cyanophenyl)-2-[2-((3,4-dihydro-2H-1,5-benzodioxepin-7-yl)methylene)hydrazinyl]thiazole (3) was detected as the most potential AR inhibitor in this series with the Ki value of 0.018 ± 0.005 µM and the compound showed competitive AR inhibition. The cytotoxic effects of compounds 1-12 were investigated on L929 mouse fibroblast (healthy) cells using MTT assay and all these compounds were defined as non-cytotoxic agents against L929 cells. Molecular docking studies, which were employed to determine the affinity of compounds 1-12 into the active site of AR, highlighted that the thiazole scaffold of all these compounds presented π-π stacking interactions with Trp20 and Phe122. According to both in vitro and in silico assays, these potential AR inhibitors may have great importance in the prevention of diabetic microvascular conditions.


Subject(s)
Aldehyde Reductase/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Thiazoles/pharmacology , Aldehyde Reductase/metabolism , Animals , Cells, Cultured , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
14.
Molecules ; 25(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126761

ABSTRACT

Dipeptidyl peptidase-4 (DPP-4) inhibition has been recognized as a promising approach to develop safe and potent antidiabetic agents for the management of type 2 diabetes. In this context, new thiosemicarbazones (2a-o) were prepared efficiently by the reaction of aromatic aldehydes with 4-[4-(1H-pyrazol-1-yl)phenyl]thiosemicarbazide (1), which was obtained via the reaction of 4-(1H-pyrazol-1-yl)phenyl isothiocyanate with hydrazine hydrate. Compounds 2a-o were evaluated for their DPP-4 inhibitory effects based on a convenient fluorescence-based assay. 4-[4-(1H-pyrazol-1-yl)phenyl]-1-(4-bromobenzylidene)thiosemicarbazide (2f) was identified as the most effective DPP-4 inhibitor in this series with an IC50 value of 1.266 ± 0.264 nM when compared with sitagliptin (IC50 = 4.380 ± 0.319 nM). MTT test was carried out to assess the cytotoxic effects of compounds 2a-o on NIH/3T3 mouse embryonic fibroblast (normal) cell line. According to cytotoxicity assay, compound 2f showed cytotoxicity towards NIH/3T3 cell line with an IC50 value higher than 500 µM pointing out its favourable safety profile. Molecular docking studies indicated that compound 2f presented π-π interactions with Arg358 and Tyr666 via pyrazole scaffold and 4-bromophenyl substituent, respectively. Overall, in vitro and in silico studies put emphasis on that compound 2f attracts a great notice as a drug-like DPP-4 inhibitor for further antidiabetic research.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Drug Design , Pyrazoles/chemistry , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/pharmacology , Chemistry Techniques, Synthetic , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/metabolism , Molecular Docking Simulation , Protein Conformation , Thiosemicarbazones/chemistry , Thiosemicarbazones/metabolism
15.
Molecules ; 25(21)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171861

ABSTRACT

Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are crucial targetable enzymes in cancer management. Therefore, herein, new 2-[(5-((1H-indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(thiazol/benzothiazol-2-yl)acetamides (2a-i) were designed and synthesized as EGFR and COX-2 inhibitors. The cytotoxic effects of compounds 2a-i on HCT116 human colorectal carcinoma, A549 human lung adenocarcinoma, and A375 human melanoma cell lines were determined using MTT assay. 2-[(5-((1H-Indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(6-ethoxybenzothiazol-2-yl)acetamide (2e) exhibited the most significant anticancer activity against HCT116, A549, and A375 cell lines with IC50 values of 6.43 ± 0.72 µM, 9.62 ± 1.14 µM, and 8.07 ± 1.36 µM, respectively, when compared with erlotinib (IC50 = 17.86 ± 3.22 µM, 19.41 ± 2.38 µM, and 23.81 ± 4.17 µM, respectively). Further mechanistic assays demonstrated that compound 2e enhanced apoptosis (28.35%) in HCT116 cells more significantly than erlotinib (7.42%) and caused notable EGFR inhibition with an IC50 value of 2.80 ± 0.52 µM when compared with erlotinib (IC50 = 0.04 ± 0.01 µM). However, compound 2e did not cause any significant COX-2 inhibition, indicating that this compound showed COX-independent anticancer activity. The molecular docking study of compound 2e emphasized that the benzothiazole ring of this compound occupied the allosteric pocket in the EGFR active site. In conclusion, compound 2e is a promising EGFR inhibitor that warrants further clinical investigations.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Indoles/pharmacology , Oxadiazoles/pharmacology , A549 Cells , Allosteric Site , Animals , Apoptosis , Benzothiazoles/chemistry , Catalytic Domain , Cell Line, Tumor , Cyclooxygenase 1/chemistry , Cyclooxygenase 2/chemistry , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/pharmacology , HCT116 Cells , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Molecular Structure , Sheep , Structure-Activity Relationship , Thiazoles/chemistry
16.
Arch Pharm (Weinheim) ; 351(7): e1800082, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29963739

ABSTRACT

In an effort to develop potent monoamine oxidase (MAO) inhibitors, new pyrrole derivatives were obtained via the selective reduction of the CC bonds of 1-(1-methyl-1H-pyrrol-2-yl)-3-[5-(aryl)furan-2-yl]prop-2-en-1-ones through palladium catalyzed hydrogenation in ethanol. The synthesized compounds were screened for their inhibitory effects on MAO-A and MAO-B by an in vitro fluorometric method. The selectivity index (SI) value was given as the ratio of IC50 (MAO-A)/IC50 (MAO-B) for each compound. 3-(5-(4-Chlorophenyl)furan-2-yl)-1-(1-methyl-1H-pyrrol-2-yl)propan-1-one (6) was identified as the most selective MAO-A inhibitor in this series, with an IC50 value of 0.162 µM and a SI value of 0.002. Kinetic studies were also carried out to assess the nature of MAO-A inhibition by compound 6. According to Lineweaver-Burk plots, compound 6 was found to be a competitive MAO-A inhibitor and the Ki value of compound 6 was determined as 0.1221 µM. Docking studies were performed for compound 6 and clorgyline using the human MAO-A crystal structure (PDB ID: 2Z5Y). The docking results showed that compound 6 presented similar interactions as clorgyline in the active center cavity of the enzyme. Molinspiration software was used to determine the physicochemical parameters of all compounds for an evaluation of their compliance to Lipinski's rule of five. Compound 6 did not violate Lipinski's rule, making it a potential orally bioavailable therapeutic agent.


Subject(s)
Computer Simulation , Drug Design , Monoamine Oxidase Inhibitors/pharmacology , Pyrroles/pharmacology , Fluorometry , Humans , In Vitro Techniques , Inhibitory Concentration 50 , Kinetics , Molecular Docking Simulation , Monoamine Oxidase/drug effects , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
17.
Molecules ; 23(6)2018 May 31.
Article in English | MEDLINE | ID: mdl-29857484

ABSTRACT

In an attempt to develop potent anticancer agents targeting Akt, new thiazole derivatives (1⁻10) were synthesized and investigated for their cytotoxic effects on A549 human lung adenocarcinoma, C6 rat glioma, and NIH/3T3 (healthy) mouse embryonic fibroblast cell lines. The most potent compounds were also investigated for their effects on apoptosis and Akt pathway. The most promising anticancer agent was found to be 2-[2-((4-(4-cyanophenoxy)phenyl)methylene)hydrazinyl]-4-(4-cyanophenyl)thiazole (6), due to its selective inhibitory effects on A549 and C6 cells with IC50 values of 12.0 ± 1.73 µg/mL and 3.83 ± 0.76 µg/mL, respectively. Furthermore, compound 6 increased early and late apoptotic cell population (32.8%) in C6 cell line more than cisplatin (28.8%) and significantly inhibited the Akt enzyme. The molecular docking study was performed to predict the possible binding modes of compounds A, 6, and 8 inside the active site of Akt (PDB code: 4EJN). Molecular docking simulations were found to be in accordance with in vitro studies and, hence, supported the biological activity. A computational study for the prediction of absorption, distribution, metabolism and excretion (ADME) properties of all compounds was also performed. On the basis of Lipinski's rule of five, the compounds were expected to be potential orally bioavailable agents.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Drug Design , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Animals , Antineoplastic Agents/chemistry , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Models, Molecular , Molecular Conformation , NIH 3T3 Cells , Protein Binding , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/chemistry , Thiazoles/chemistry
18.
Molecules ; 23(9)2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30150574

ABSTRACT

Parkinson's disease (PD) is a chronic, progressive, and age-related neurodegenerative disorder characterized by the loss of midbrain dopaminergic neurons caused by the accumulation of free radicals and oxidative stress. Based on the neuroprotective properties of 2-pyrazoline derivatives, in the current work, 1-(phenyl/4-substituted phenyl)-3-(2-furanyl/thienyl)-5-aryl-2-pyrazolines (3a⁻i, 4a⁻i) were synthesized via the cyclization of the chalcones (1, 2) with suitable phenylhydrazine hydrochloride derivatives. All these compounds were investigated for their neuroprotective effects using an in vitro 6-hydroxydopamine (6-OHDA)-induced neurotoxicity model of PD in the rat pheochromocytoma (PC-12) Adh cell line. In addition, some different pharmacokinetic parameters of all compounds were in silico predicted by the QikProp module of Schrödinger's Maestro molecular modeling package. 4-Methylsulfonylphenyl substituted compounds 3h (20%) and 4h (23%) were determined as the most promising neuroprotective agents related to their inductive roles in cell viability when compared with the 6-OHDA-positive control group (43% and 42%, respectively). Moreover, in silico pharmacokinetic results indicated that all compounds were within the acceptable range intended for human use. According to both in vitro and in silico studies, compounds 3h and 4h draw attention as potential orally bioavailable therapeutic drug candidates against neurodegeneration in PD.


Subject(s)
Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Oxidopamine/adverse effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Chemistry Techniques, Synthetic , Drug Design , Magnetic Resonance Spectroscopy , Molecular Structure , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/chemical synthesis , Pyrazoles/chemical synthesis , Rats , Spectroscopy, Fourier Transform Infrared
19.
Bioorg Med Chem ; 25(13): 3547-3554, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28511907

ABSTRACT

In the last years, inhibition of carbonic anhydrase (CA) has emerged as a promising approach for pharmacologic intervention in a variety of disorders such as glaucoma, epilepsy, obesity, and cancer. As a consequence, the design of CA inhibitors (CAIs) is a highly dynamic field of medicinal chemistry. Due to the therapeutic potential of thiadiazoles as CAIs, new 1,3,4-thiadiazole derivatives were synthesized and investigated for their inhibitory effects on hCA I and hCA II. Although the tested compounds did not carry a sulfonamide group, an important pharmacophore for CA inhibitory activity, it was a remarkable finding that most of them were more effective on hCAs than acetazolamide (AAZ), the reference agent. Among these compounds, N'-((5-(4-chlorophenyl)furan-2-yl)methylene)-2-((5-(phenylamino)-1,3,4-thiadiazol-2-yl)thio)acetohydrazide (3) was found to be the most effective compound on hCA I with an IC50 value of 0.14nM, whereas N'-((5-(2-chlorophenyl)furan-2-yl)methylene)-2-((5-(phenylamino)-1,3,4-thiadiazol-2-yl)thio)acetohydrazide (1) was found to be the most potent compound on hCA II with an IC50 value of 0.15nM. According to molecular docking studies, all compounds exhibited high affinity and good amino acid interactions similar to AAZ on the both active sites of hCA I and hCA II enzymes.


Subject(s)
Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Drug Design , Molecular Docking Simulation , Thiadiazoles/pharmacology , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry
20.
Molecules ; 22(7)2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28677624

ABSTRACT

Matrix metalloproteinases (MMPs) are important proteases involved in tumor progression including angiogenesis, tissue invasion, and migration. Therefore, MMPs have been reported as potential diagnostic and prognostic biomarkers in many types of cancer. New oxadiazole, thiadiazole, and triazole derivatives were synthesized and evaluated for their anticancer effects on A549 human lung adenocarcinoma and C6 rat glioma cell lines. In order to examine the relationship between their anticancer activity and MMP-9, the compounds were evaluated for their inhibitory effects on MMPs. N-(1,3-Benzodioxol-5-ylmethyl)-2-{[5,[5-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)-1,3,4-oxadiazol-2-yl]thio}acetamide (8) and N-(1,3-benzodioxol-5-ylmethyl)-2-[(5-phenyl-1,3,4-oxadiazol-2-yl)thio]acetamide (9) revealed promising cytotoxic effects on A549 and C6 cell lines similar to cisplatin without causing any toxicity towards NIH/3T3 mouse embryonic fibroblast cell line. Compounds 8 and 9 were also the most effective MMP-9 inhibitors in this series. Moreover, docking studies pointed out that compounds 8 and 9 had good affinity to the active site of the MMP-9 enzyme. The molecular docking and in vitro studies suggest that the MMP-9 inhibitory effects of compounds 8 and 9 may play an important role in lung adenocarcinoma and glioma treatment.


Subject(s)
Antineoplastic Agents/chemical synthesis , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/chemical synthesis , Neoplasms/metabolism , A549 Cells , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalytic Domain/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Humans , Matrix Metalloproteinase 9/chemistry , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology , Mice , Molecular Docking Simulation , NIH 3T3 Cells , Neoplasm Invasiveness , Neoplasms/drug therapy , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Rats , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL