Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Annu Rev Immunol ; 38: 649-671, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32040356

ABSTRACT

A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.


Subject(s)
Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Gastrointestinal Microbiome , Gastrointestinal Neoplasms/etiology , Gastrointestinal Neoplasms/metabolism , Host-Pathogen Interactions/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Adaptive Immunity , Animals , Gastric Mucosa/pathology , Gastrointestinal Microbiome/immunology , Gastrointestinal Neoplasms/pathology , Humans , Immunity, Innate , Intestinal Mucosa/pathology , Liver/immunology , Liver/metabolism , Liver/pathology
2.
Cell ; 164(5): 896-910, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26919428

ABSTRACT

Nuclear factor κB (NF-κB), a key activator of inflammation, primes the NLRP3-inflammasome for activation by inducing pro-IL-1ß and NLRP3 expression. NF-κB, however, also prevents excessive inflammation and restrains NLRP3-inflammasome activation through a poorly defined mechanism. We now show that NF-κB exerts its anti-inflammatory activity by inducing delayed accumulation of the autophagy receptor p62/SQSTM1. External NLRP3-activating stimuli trigger a form of mitochondrial (mt) damage that is caspase-1- and NLRP3-independent and causes release of direct NLRP3-inflammasome activators, including mtDNA and mtROS. Damaged mitochondria undergo Parkin-dependent ubiquitin conjugation and are specifically recognized by p62, which induces their mitophagic clearance. Macrophage-specific p62 ablation causes pronounced accumulation of damaged mitochondria and excessive IL-1ß-dependent inflammation, enhancing macrophage death. Therefore, the "NF-κB-p62-mitophagy" pathway is a macrophage-intrinsic regulatory loop through which NF-κB restrains its own inflammation-promoting activity and orchestrates a self-limiting host response that maintains homeostasis and favors tissue repair.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Heat-Shock Proteins/metabolism , Inflammasomes/metabolism , Mitochondria/metabolism , NF-kappa B p50 Subunit/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Heat-Shock Proteins/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/metabolism , Macrophages/metabolism , Mice , Reactive Oxygen Species/metabolism , Sequestosome-1 Protein , Ubiquitin-Protein Ligases/metabolism
3.
Cell ; 162(4): 766-79, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26276631

ABSTRACT

Compensatory proliferation triggered by hepatocyte loss is required for liver regeneration and maintenance but also promotes development of hepatocellular carcinoma (HCC). Despite extensive investigation, the cells responsible for hepatocyte restoration or HCC development remain poorly characterized. We used genetic lineage tracing to identify cells responsible for hepatocyte replenishment following chronic liver injury and queried their roles in three distinct HCC models. We found that a pre-existing population of periportal hepatocytes, located in the portal triads of healthy livers and expressing low amounts of Sox9 and other bile-duct-enriched genes, undergo extensive proliferation and replenish liver mass after chronic hepatocyte-depleting injuries. Despite their high regenerative potential, these so-called hybrid hepatocytes do not give rise to HCC in chronically injured livers and thus represent a unique way to restore tissue function and avoid tumorigenesis. This specialized set of pre-existing differentiated cells may be highly suitable for cell-based therapy of chronic hepatocyte-depleting disorders.


Subject(s)
Hepatocytes/transplantation , Liver/cytology , Liver/physiology , Animals , Bile Ducts/cytology , Cell Proliferation , Cell Transplantation/methods , Hepatocytes/classification , Hepatocytes/cytology , Liver/injuries , Liver Neoplasms , Mice , Regeneration , SOX9 Transcription Factor/genetics , Transcriptome
4.
Genes Dev ; 35(11-12): 787-820, 2021 06.
Article in English | MEDLINE | ID: mdl-34074695

ABSTRACT

Colorectal cancer has served as a genetic and biological paradigm for the evolution of solid tumors, and these insights have illuminated early detection, risk stratification, prevention, and treatment principles. Employing the hallmarks of cancer framework, we provide a conceptual framework to understand how genetic alterations in colorectal cancer drive cancer cell biology properties and shape the heterotypic interactions across cells in the tumor microenvironment. This review details research advances pertaining to the genetics and biology of colorectal cancer, emerging concepts gleaned from immune and single-cell profiling, and critical advances and remaining knowledge gaps influencing the development of effective therapies for this cancer that remains a major public health burden.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Biomarkers, Tumor/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/physiopathology , Colorectal Neoplasms/therapy , Humans , Mutation/genetics , Research/trends , Tumor Microenvironment/immunology
5.
Immunity ; 51(1): 15-26, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31315033

ABSTRACT

In many settings, tumor-associated inflammation, supported mainly by innate immune cells, contributes to tumor growth. Initial innate activation triggers secretion of inflammatory, regenerative, and anti-inflammatory cytokines, which in turn shape the adaptive immune response to the tumor. Here, we review the current understanding of the intricate dialog between cancer-associated inflammation and anti-tumor immunity. We discuss the changing nature of these interactions during tumor progression and the impact of the tissue environment on the anti-tumor immune response. In this context, we outline important gaps in current understanding by considering basic research and findings in the clinic. The future of cancer immunotherapy and its utility depend on improved understanding of these interactions and the ability to manipulate them in a predictable and beneficial manner.


Subject(s)
Immunity , Immunotherapy/methods , Neoplasms/immunology , Tumor Escape , Animals , Humans , Inflammation , Tumor Microenvironment
6.
Cell ; 155(2): 384-96, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24120137

ABSTRACT

Hepatocellular carcinoma (HCC) is a slowly developing malignancy postulated to evolve from premalignant lesions in chronically damaged livers. However, it was never established that premalignant lesions actually contain tumor progenitors that give rise to cancer. Here, we describe isolation and characterization of HCC progenitor cells (HcPCs) from different mouse HCC models. Unlike fully malignant HCC, HcPCs give rise to cancer only when introduced into a liver undergoing chronic damage and compensatory proliferation. Although HcPCs exhibit a similar transcriptomic profile to bipotential hepatobiliary progenitors, the latter do not give rise to tumors. Cells resembling HcPCs reside within dysplastic lesions that appear several months before HCC nodules. Unlike early hepatocarcinogenesis, which depends on paracrine IL-6 production by inflammatory cells, due to upregulation of LIN28 expression, HcPCs had acquired autocrine IL-6 signaling that stimulates their in vivo growth and malignant progression. This may be a general mechanism that drives other IL-6-producing malignancies.


Subject(s)
Autocrine Communication , Gene Expression Regulation, Neoplastic , Interleukin-6/metabolism , Liver Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Disease Progression , Hepacivirus , Hepatitis C/genetics , Hepatitis C/metabolism , Hepatitis C/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL
7.
Proc Natl Acad Sci U S A ; 120(19): e2300706120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126700

ABSTRACT

Although viral hepatocellular carcinoma (HCC) is declining, nonviral HCC, which often is the end stage of nonalcoholic or alcoholic steatohepatitis (NASH, ASH), is on an upward trajectory. Immune checkpoint inhibitors (ICIs) that block the T cell inhibitory receptor PD-1 were approved for treatment of all HCC types. However, only a minority of HCC patients show a robust and sustained response to PD-1 blockade, calling for improved understanding of factors that negatively impact response rate and duration and the discovery of new adjuvant treatments that enhance ICI responsiveness. Using a mouse model of NASH-driven HCC, we identified peritumoral fibrosis as a potential obstacle to T cell-mediated tumor regression and postulated that antifibrotic medications may increase ICI responsiveness. We now show that the angiotensin II receptor inhibitor losartan, a commonly prescribed and safe antihypertensive drug, reduced liver and peritumoral fibrosis and substantially enhanced anti-PD-1-induced tumor regression. Although losartan did not potentiate T cell reinvigoration, it substantially enhanced HCC infiltration by effector CD8+ T cells compared to PD-1 blockade alone. The beneficial effects of losartan correlated with blunted TGF-ß receptor signaling, reduced collagen deposition, and depletion of immunosuppressive fibroblasts.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/pathology , CD8-Positive T-Lymphocytes , Losartan , Liver Cirrhosis/pathology
8.
Semin Immunol ; 52: 101479, 2021 02.
Article in English | MEDLINE | ID: mdl-34215491

ABSTRACT

The opposing roles of innate and adaptive immune cells in suppressing or supporting cancer initiation, progression, metastasis and response to therapy has been long debated. The mechanisms by which different monocyte and T cell subtypes affect and modulate cancer have been extensively studied. However, the role of B cells and their subtypes have remained elusive, perhaps partially due to their heterogeneity and range of actions. B cells can produce a variety of cytokines and present tumor-derived antigens to T cells in combination with co-stimulatory or inhibitory ligands based on their phenotype. Unlike most T cells, B cells can be activated by innate immune stimuli, such as endotoxin. Furthermore, the isotype and specificity of the antibodies produced by plasma cells regulate distinct immune responses, including opsonization, antibody-mediated cellular cytotoxicity (ADCC) and complement activation. B cells are shaped by the tumor environment (TME), with the capability to regulate the TME in return. In this review, we will describe the mechanisms of B cell action, including cytokine production, antigen presentation, ADCC, opsonization, complement activation and how they affect tumor development and response to immunotherapy. We will also discuss how B cell fate within the TME is affected by tumor stroma, microbiome and metabolism.


Subject(s)
B-Lymphocytes , Neoplasms , Humans , Immunotherapy , Neoplasms/therapy , T-Lymphocytes
9.
Nature ; 560(7717): 198-203, 2018 08.
Article in English | MEDLINE | ID: mdl-30046112

ABSTRACT

Dysregulated NLRP3 inflammasome activity results in uncontrolled inflammation, which underlies many chronic diseases. Although mitochondrial damage is needed for the assembly and activation of the NLRP3 inflammasome, it is unclear how macrophages are able to respond to structurally diverse inflammasome-activating stimuli. Here we show that the synthesis of mitochondrial DNA (mtDNA), induced after the engagement of Toll-like receptors, is crucial for NLRP3 signalling. Toll-like receptors signal via the MyD88 and TRIF adaptors to trigger IRF1-dependent transcription of CMPK2, a rate-limiting enzyme that supplies deoxyribonucleotides for mtDNA synthesis. CMPK2-dependent mtDNA synthesis is necessary for the production of oxidized mtDNA fragments after exposure to NLRP3 activators. Cytosolic oxidized mtDNA associates with the NLRP3 inflammasome complex and is required for its activation. The dependence on CMPK2 catalytic activity provides opportunities for more effective control of NLRP3 inflammasome-associated diseases.


Subject(s)
DNA, Mitochondrial/biosynthesis , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Biocatalysis , Cytosol/metabolism , Interferon Regulatory Factor-1/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Mice , Mitochondria/metabolism , Mitochondria/pathology , Nucleoside-Phosphate Kinase/genetics , Nucleoside-Phosphate Kinase/metabolism , Oxidation-Reduction , Signal Transduction , Toll-Like Receptors/immunology
10.
Nature ; 561(7721): E1, 2018 09.
Article in English | MEDLINE | ID: mdl-29973714

ABSTRACT

In this Article, the sentence: "After 7 months of HFD, MUP-uPA mice developed HCC15, which contained numerous (usually 50-100 per tumour) non-recurrent coding mutations in pathways that are mutated in human HCC (Fig. 2d and Extended Data Fig. 6a).", should have read: "After 7 months of HFD, MUP-uPA mice developed HCC15, which contained numerous (usually 50-100 per tumour) non-recurrent mutations in pathways that are mutated in human HCC (Fig. 2d and Extended Data Fig. 6a).". This has been corrected online. In Extended Data Fig. 6a and b, which show the number of point mutations identified per sample and the mutational signatures, all sequence variants (including non-coding mutations) are shown. Fig. 2d also presents all variants compared to human mutations. In the Supplementary Information to this Amendment, we now provide the comparisons of all variants and coding variants to human mutations.

11.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33602823

ABSTRACT

Many cancers evade immune rejection by suppressing major histocompatibility class I (MHC-I) antigen processing and presentation (AgPP). Such cancers do not respond to immune checkpoint inhibitor therapies (ICIT) such as PD-1/PD-L1 [PD-(L)1] blockade. Certain chemotherapeutic drugs augment tumor control by PD-(L)1 inhibitors through potentiation of T-cell priming but whether and how chemotherapy enhances MHC-I-dependent cancer cell recognition by cytotoxic T cells (CTLs) is not entirely clear. We now show that the lysine acetyl transferases p300/CREB binding protein (CBP) control MHC-I AgPPM expression and neoantigen amounts in human cancers. Moreover, we found that two distinct DNA damaging drugs, the platinoid oxaliplatin and the topoisomerase inhibitor mitoxantrone, strongly up-regulate MHC-I AgPP in a manner dependent on activation of nuclear factor kappa B (NF-κB), p300/CBP, and other transcription factors, but independently of autocrine IFNγ signaling. Accordingly, NF-κB and p300 ablations prevent chemotherapy-induced MHC-I AgPP and abrogate rejection of low MHC-I-expressing tumors by reinvigorated CD8+ CTLs. Drugs like oxaliplatin and mitoxantrone may be used to overcome resistance to PD-(L)1 inhibitors in tumors that had "epigenetically down-regulated," but had not permanently lost MHC-I AgPP activity.


Subject(s)
Antigen Presentation/immunology , Gene Expression Regulation, Neoplastic/drug effects , Histocompatibility Antigens Class I/immunology , Immune Checkpoint Inhibitors/pharmacology , NF-kappa B/metabolism , Neoplasms/drug therapy , p300-CBP Transcription Factors/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes , Cell Proliferation , Drug Therapy, Combination , Humans , Immunotherapy/methods , Mice , NF-kappa B/genetics , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Oxaliplatin/pharmacology , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , p300-CBP Transcription Factors/genetics
12.
Immunity ; 41(6): 1052-63, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25526314

ABSTRACT

Interleukin-17A (IL-17A) is a pro-inflammatory cytokine linked to rapid malignant progression of colorectal cancer (CRC) and therapy resistance. IL-17A exerts its pro-tumorigenic activity through its type A receptor (IL-17RA). However, IL-17RA is expressed in many cell types, including hematopoietic, fibroblastoid, and epithelial cells, in the tumor microenvironment, and how IL-17RA engagement promotes colonic tumorigenesis is unknown. Here we show that IL-17RA signals directly within transformed colonic epithelial cells (enterocytes) to promote early tumor development. IL-17RA engagement activates ERK, p38 MAPK, and NF-κB signaling and promotes the proliferation of tumorigenic enterocytes that just lost expression of the APC tumor suppressor. Although IL-17RA signaling also controls the production of IL-6, this mechanism makes only a partial contribution to colonic tumorigenesis. Combined treatment with chemotherapy, which induces IL-17A expression, and an IL-17A neutralizing antibody enhanced the therapeutic responsiveness of established colon tumors. These findings establish IL-17A and IL-17RA as therapeutic targets in colorectal cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/immunology , Colorectal Neoplasms/immunology , Enterocytes/physiology , Receptors, Interleukin-17/metabolism , Aberrant Crypt Foci/genetics , Animals , Antibodies, Blocking/administration & dosage , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Line, Transformed , Colonic Neoplasms/chemically induced , Colonic Neoplasms/drug therapy , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/drug therapy , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Enterocytes/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorouracil/administration & dosage , Humans , Interleukin-17/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NF-kappa B/metabolism , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/immunology , Signal Transduction/drug effects , Signal Transduction/genetics , Tamoxifen/administration & dosage , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Nature ; 551(7680): 340-345, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29144460

ABSTRACT

The role of adaptive immunity in early cancer development is controversial. Here we show that chronic inflammation and fibrosis in humans and mice with non-alcoholic fatty liver disease is accompanied by accumulation of liver-resident immunoglobulin-A-producing (IgA+) cells. These cells also express programmed death ligand 1 (PD-L1) and interleukin-10, and directly suppress liver cytotoxic CD8+ T lymphocytes, which prevent emergence of hepatocellular carcinoma and express a limited repertoire of T-cell receptors against tumour-associated antigens. Whereas CD8+ T-cell ablation accelerates hepatocellular carcinoma, genetic or pharmacological interference with IgA+ cell generation attenuates liver carcinogenesis and induces cytotoxic T-lymphocyte-mediated regression of established hepatocellular carcinoma. These findings establish the importance of inflammation-induced suppression of cytotoxic CD8+ T-lymphocyte activation as a tumour-promoting mechanism.


Subject(s)
Carcinoma, Hepatocellular/immunology , Immune Tolerance/immunology , Immunoglobulin A/immunology , Inflammation/immunology , Liver Neoplasms/immunology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/immunology , Animals , B7-H1 Antigen/metabolism , CD8 Antigens/deficiency , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Clone Cells/cytology , Clone Cells/immunology , Disease Progression , Female , Gastrointestinal Microbiome , Humans , Immunoglobulin A/metabolism , Inflammation/etiology , Inflammation/pathology , Interleukin-10/metabolism , Liver Cirrhosis/complications , Liver Cirrhosis/immunology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Neoplasms/etiology , Liver Neoplasms/pathology , Lymphocyte Activation , Male , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Plasma Cells/immunology , Plasma Cells/metabolism , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology
15.
Nature ; 521(7550): 94-8, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25924065

ABSTRACT

Cancer-associated genetic alterations induce expression of tumour antigens that can activate CD8(+) cytotoxic T cells (CTLs), but the microenvironment of established tumours promotes immune tolerance through poorly understood mechanisms. Recently developed therapeutics that overcome tolerogenic mechanisms activate tumour-directed CTLs and are effective in some human cancers. Immune mechanisms also affect treatment outcome, and certain chemotherapeutic drugs stimulate cancer-specific immune responses by inducing immunogenic cell death and other effector mechanisms. Our previous studies revealed that B cells recruited by the chemokine CXCL13 into prostate cancer tumours promote the progression of castrate-resistant prostate cancer by producing lymphotoxin, which activates an IκB kinase α (IKKα)-BMI1 module in prostate cancer stem cells. Because castrate-resistant prostate cancer is refractory to most therapies, we examined B cell involvement in the acquisition of chemotherapy resistance. Here we focus on oxaliplatin, an immunogenic chemotherapeutic agent that is effective in aggressive prostate cancer. We show that mouse B cells modulate the response to low-dose oxaliplatin, which promotes tumour-directed CTL activation by inducing immunogenic cell death. Three different mouse prostate cancer models were refractory to oxaliplatin unless genetically or pharmacologically depleted of B cells. The crucial immunosuppressive B cells are plasmocytes that express IgA, interleukin (IL)-10 and programmed death ligand 1 (PD-L1), the appearance of which depends on TGFß receptor signalling. Elimination of these cells, which also infiltrate human-therapy-resistant prostate cancer, allows CTL-dependent eradication of oxaliplatin-treated tumours.


Subject(s)
Organoplatinum Compounds/pharmacology , Plasma Cells/drug effects , Plasma Cells/immunology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Adoptive Transfer , Animals , Antibodies, Neoplasm/immunology , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , B7-H1 Antigen/metabolism , Cells, Cultured , Chemokine CXCL13/metabolism , Humans , I-kappa B Kinase/metabolism , Immunoglobulin A/immunology , Interleukin-10/immunology , Lymphocyte Activation/drug effects , Male , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/pathology , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/immunology , Organoplatinum Compounds/therapeutic use , Oxaliplatin , Plasma Cells/cytology , Prostatic Neoplasms/pathology , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , T-Lymphocytes, Cytotoxic/cytology , Transforming Growth Factor beta/immunology
16.
Proc Natl Acad Sci U S A ; 115(42): E9879-E9888, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30287485

ABSTRACT

Cancer genomics has enabled the exhaustive molecular characterization of tumors and exposed hepatocellular carcinoma (HCC) as among the most complex cancers. This complexity is paralleled by dozens of mouse models that generate histologically similar tumors but have not been systematically validated at the molecular level. Accurate models of the molecular pathogenesis of HCC are essential for biomedical progress; therefore we compared genomic and transcriptomic profiles of four separate mouse models [MUP transgenic, TAK1-knockout, carcinogen-driven diethylnitrosamine (DEN), and Stelic Animal Model (STAM)] with those of 987 HCC patients with distinct etiologies. These four models differed substantially in their mutational load, mutational signatures, affected genes and pathways, and transcriptomes. STAM tumors were most molecularly similar to human HCC, with frequent mutations in Ctnnb1, similar pathway alterations, and high transcriptomic similarity to high-grade, proliferative human tumors with poor prognosis. In contrast, TAK1 tumors better reflected the mutational signature of human HCC and were transcriptionally similar to low-grade human tumors. DEN tumors were least similar to human disease and almost universally carried the Braf V637E mutation, which is rarely found in human HCC. Immune analysis revealed that strain-specific MHC-I genotype can influence the molecular makeup of murine tumors. Thus, different mouse models of HCC recapitulate distinct aspects of HCC biology, and their use should be adapted to specific questions based on the molecular features provided here.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Gene Expression Profiling , Genomics/methods , Liver Neoplasms, Experimental/genetics , Liver Neoplasms/genetics , Animals , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Humans , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL , Transcriptome
17.
Genes Dev ; 27(13): 1435-40, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23796898

ABSTRACT

Androgen-deprived prostate cancer (PCa) is infiltrated by B lymphocytes that produce cytokines that activate IκB kinase α (IKKα) to accelerate the emergence of castration-resistant tumors. We now demonstrate that infiltrating B lymphocytes and IKKα are also required for androgen-dependent expansion of epithelial progenitors responsible for prostate regeneration. In these cells and in PCa cells, IKKα phosphorylates transcription factor E2F1 on a site that promotes its nuclear translocation, association with the coactivator CBP, and recruitment to critical genomic targets that include Bmi1, a key regulator of normal and cancerous prostate stem cell renewal. The IKKα-BMI1 pathway is also activated in human PCa.


Subject(s)
B-Lymphocytes/physiology , E2F1 Transcription Factor/metabolism , I-kappa B Kinase/metabolism , Polycomb Repressive Complex 1/metabolism , Prostate/physiopathology , Proto-Oncogene Proteins/metabolism , Regeneration , Androgens/pharmacology , Animals , Cells, Cultured , E2F1 Transcription Factor/genetics , Gene Expression Regulation, Developmental/drug effects , Humans , I-kappa B Kinase/genetics , Male , Mice , Neoplasm Recurrence, Local/physiopathology , Orchiectomy , Polycomb Repressive Complex 1/genetics , Prostate/drug effects , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins/genetics
18.
J Transl Med ; 18(1): 214, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32466781

ABSTRACT

BACKGROUND: Immunotherapeutic regulation of the tumor microenvironment in prostate cancer patients is not understood. Most antibody immunotherapies have not succeeded in prostate cancer. We showed previously that high-risk PCa patients have a higher density of tumor infiltrating B-cells in prostatectomy specimens. In mouse models, anti-CD20 antibody ablation of B-cells delayed PCa regrowth post-treatment. We sought to determine whether neoadjuvant anti-CD20 immunotherapy with rituximab could reduce CD20+ B cell infiltration of prostate tumors in patients. METHODS: An open label, single arm clinical trial enrolled eight high-risk PCa patients to receive one cycle of neoadjuvant rituximab prior to prostatectomy. Eleven clinical specimens with similar characteristics were selected as controls. Treated and control samples were concurrently stained for CD20 and digitally scanned in a blinded fashion. A new method of digital image quantification of lymphocytes was applied to prostatectomy sections of treated and control cases. CD20 density was quantified by a deconvolution algorithm in pathologist-marked tumor and adjacent regions. Statistical significance was assessed by one sided Welch's t-test, at 0.05 level using a gatekeeper strategy. Secondary outcomes included CD3+ T-cell and PD-L1 densities. RESULTS: Mean CD20 density in the tumor regions of the treated group was significantly lower than the control group (p = 0.02). Mean CD3 density in the tumors was significantly decreased in the treated group (p = 0.01). CD20, CD3 and PD-L1 staining primarily occurred in tertiary lymphoid structures (TLS). Neoadjuvant rituximab was well-tolerated and decreased B-cell and T-cell density within high-risk PCa tumors compared to controls. CONCLUSIONS: This is the first study to treat patients prior to surgical prostate removal with an immunotherapy that targets B-cells. Rituximab treatment reduced tumor infiltrating B and T-cell density especially in TLSs, thus, demonstrating inter-dependence between B- and T-cells in prostate cancer and that Rituximab can modify the immune environment in prostate tumors. Future studies will determine who may benefit from using rituximab to improve their immune response against prostate cancer. Trial registration NCT01804712, March 5th, 2013 https://clinicaltrials.gov/ct2/show/NCT01804712?cond=NCT01804712&draw=2&rank=1.


Subject(s)
Neoadjuvant Therapy , Prostatic Neoplasms , Animals , B7-H1 Antigen , Humans , Lymphocytes, Tumor-Infiltrating , Male , Mice , Prostatectomy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/surgery , Rituximab/therapeutic use , T-Lymphocytes , Tumor Microenvironment
19.
Proc Natl Acad Sci U S A ; 111(41): 14776-81, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25267627

ABSTRACT

Prostate cancer (PC) is a slowly progressing malignancy that often responds to androgen ablation or chemotherapy by becoming more aggressive, acquiring a neuroendocrine phenotype, and undergoing metastatic spread. We found that B lymphocytes recruited into regressing androgen-deprived tumors by C-X-C motif chemokine 13 (CXCL13), a chemokine whose expression correlates with clinical severity, play an important role in malignant progression and metastatic dissemination of PC. We now describe how androgen ablation induces CXCL13 expression. In both allografted and spontaneous mouse PC, CXCL13 is expressed by tumor-associated myofibroblasts that are activated on androgen ablation through a hypoxia-dependent mechanism. The same cells produce CXCL13 after chemotherapy. Myofibroblast activation and CXCL13 expression also occur in the normal prostate after androgen deprivation, and CXCL13 is expressed by myofibroblasts in human PC. Hypoxia activates hypoxia-inducible factor 1 (HIF-1) and induces autocrine TGF-ß signaling that promotes myofibroblast activation and CXCL13 induction. In addition to TGF-ß receptor kinase inhibitors, myofibroblast activation and CXCL13 induction are blocked by phosphodiesterase 5 (PDE5) inhibitors. Both inhibitor types and myofibroblast immunodepletion block the emergence of castration-resistant PC in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of spontaneous metastatic PC with neuroendocrine differentiation.


Subject(s)
Chemokine CXCL13/metabolism , Disease Progression , Hypoxia/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Prostate/pathology , Prostatic Neoplasms/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Androgens/pharmacology , Animals , Connective Tissue Growth Factor/metabolism , Humans , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Mice, Transgenic , Myofibroblasts/drug effects , Phosphodiesterase 5 Inhibitors/pharmacology , Prostate/drug effects , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Tumor Necrosis Factor, Member 25/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism
20.
Science ; 384(6703): eadh4567, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38935717

ABSTRACT

Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8+ T cell activation and elimination of ptPDAC with restoration of life span even upon PDAC rechallenge. Using PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with elimination of tumors. cDC1 vaccination coupled with iCBT identified specific CDR3 sequences in the tumor-infiltrating CD8+ T cells with potential therapeutic importance. This study identifies a fundamental difference in the immune microenvironment in PDAC concurrent with, or without, pancreatitis and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.


Subject(s)
Carcinoma, Pancreatic Ductal , Dendritic Cells , Immunotherapy , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Mice , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Mice, Inbred C57BL , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/immunology , Pancreatitis/immunology , Pancreatitis/therapy , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL