Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 120(41): e2220403120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37796985

ABSTRACT

As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.


Subject(s)
COVID-19 , Measles , Mumps , Cricetinae , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Measles-Mumps-Rubella Vaccine , Antibodies, Viral , Broadly Neutralizing Antibodies , Immunoglobulin G , Mesocricetus , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
2.
J Immunol ; 210(9): 1257-1271, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36881867

ABSTRACT

Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide- and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide-adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.


Subject(s)
Aluminum Hydroxide , COVID-19 , Humans , Animals , Mice , Immunity, Mucosal , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Immunization , Adjuvants, Immunologic , Antibodies, Viral , Antibodies, Neutralizing
3.
Proc Natl Acad Sci U S A ; 119(33): e2201616119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35895717

ABSTRACT

With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Measles-Mumps-Rubella Vaccine , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccine Efficacy , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine , Measles-Mumps-Rubella Vaccine/genetics , Measles-Mumps-Rubella Vaccine/immunology , Mesocricetus , Mice , Mumps virus/genetics , Mumps virus/immunology , Proline/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
4.
Brain Behav Immun ; 119: 919-944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718909

ABSTRACT

Neuroinflammation and accumulation of Amyloid Beta (Aß) accompanied by deterioration of special memory are hallmarks of Alzheimer's disease (AD). Effective preventative and treatment options for AD are still needed. Microglia in AD brains are characterized by elevated levels of microRNA-17 (miR-17), which is accompanied by defective autophagy, Aß accumulation, and increased inflammatory cytokine production. However, the effect of targeting miR-17 on AD pathology and memory loss is not clear. To specifically inhibit miR-17 in microglia, we generated mannose-coated lipid nanoparticles (MLNPs) enclosing miR-17 antagomir (Anti-17 MLNPs), which are targeted to mannose receptors readily expressed on microglia. We used a 5XFAD mouse model (AD) that recapitulates many AD-related phenotypes observed in humans. Our results show that Anti-17 MLNPs, delivered to 5XFAD mice by intra-cisterna magna injection, specifically deliver Anti-17 to microglia. Anti-17 MLNPs downregulated miR-17 expression in microglia but not in neurons, astrocytes, and oligodendrocytes. Anti-17 MLNPs attenuated inflammation, improved autophagy, and reduced Aß burdens in the brains. Additionally, Anti-17 MLNPs reduced the deterioration in spatial memory and decreased anxiety-like behavior in 5XFAD mice. Therefore, targeting miR-17 using MLNPs is a viable strategy to prevent several AD pathologies. This selective targeting strategy delivers specific agents to microglia without the adverse off-target effects on other cell types. Additionally, this approach can be used to deliver other molecules to microglia and other immune cells in other organs.


Subject(s)
Alzheimer Disease , Brain , Disease Models, Animal , Mannose , Mice, Transgenic , MicroRNAs , Microglia , Nanoparticles , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , MicroRNAs/metabolism , Nanoparticles/administration & dosage , Mice , Microglia/metabolism , Microglia/drug effects , Mannose/pharmacology , Brain/metabolism , Brain/drug effects , Amyloid beta-Peptides/metabolism , Lipids , Male , Antagomirs/pharmacology , Antagomirs/administration & dosage
5.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328073

ABSTRACT

Despite global vaccination, pertussis caused by Bordetella pertussis (Bp) is resurging. Pertussis resurgence is correlated with the switch from whole cell vaccines (wPV) that elicit TH1/TH17 polarized immune responses to acellular pertussis vaccines (aPV) that elicit primarily TH2 polarized immune responses. One explanation for the increased incidence in aPV-immunized individuals is the lack of bacterial clearance from the nose. To understand the host and bacterial mechanisms that contribute to Bp persistence, we evaluated bacterial localization and the immune response in the nasal associated tissues (NT) of naïve and immunized mice following Bp challenge. Bp resided in the NT of unimmunized and aPV-immunized mice as biofilms. In contrast, Bp biofilms were not observed in wPV-immunized mice. Following infection, Siglec-F+ neutrophils, critical for eliminating Bp from the nose, were recruited to the nose at higher levels in wPV immunized mice compared to aPV immunized mice. Consistent with this observation, the neutrophil chemokine CXCL1 was only detected in the NT of wPV immunized mice. Importantly, the bacteria and immune cells were primarily localized within the NT and were not recovered by nasal lavage (NL). Together, our data suggest that the TH2 polarized immune response generated by aPV vaccination facilitates persistence in the NT by impeding the infiltration of immune effectors and the eradication of biofilms In contrast, the TH1/TH17 immune phenotype generated by wPV, recruits Siglec-F+ neutrophils that rapidly eliminate the bacterial burden and prevent biofilm establishment. Thus, our work shows that aPV and wPV have opposing effects on Bp biofilm formation in the respiratory tract and provides a mechanistic explanation for the inability of aPV vaccination to control bacterial numbers in the nose and prevent transmission.

6.
Nat Commun ; 15(1): 5589, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961063

ABSTRACT

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.


Subject(s)
Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Measles-Mumps-Rubella Vaccine/immunology , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles virus/immunology , Measles virus/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mumps virus/immunology , Mumps virus/genetics , Mice, Knockout , Mesocricetus , Immunoglobulin A/immunology , Immunoglobulin A/blood
7.
Front Immunol ; 14: 1181876, 2023.
Article in English | MEDLINE | ID: mdl-37275891

ABSTRACT

Introduction: Resurgence of pertussis, caused by Bordetella pertussis, necessitates novel vaccines and vaccination strategies to combat this disease. Alum-adjuvanted acellular pertussis vaccines (aPV) delivered intramuscularly reduce bacterial numbers in the lungs of immunized animals and humans, but do not reduce nasal colonization. Thus, aPV-immunized individuals are sources of community transmission. We showed previously that modification of a commercial aPV (Boostrix) by addition of the Th1/17 polarizing adjuvant Bordetella Colonization Factor A (BcfA) attenuated Th2 responses elicited by alum and accelerated clearance of B. pertussis from mouse lungs. Here we tested whether a heterologous immunization strategy with systemic priming and mucosal booster (prime-pull) would reduce nasal colonization. Methods: Adult male and female mice were immunized intramuscularly (i.m.) with aPV or aPV/BcfA and boosted either i.m. or intranasally (i.n.) with the same formulation. Tissue-resident memory (TRM) responses in the respiratory tract were quantified by flow cytometry, and mucosal and systemic antibodies were quantified by ELISA. Immunized and naïve mice were challenged i.n. with Bordetella pertussis and bacterial load in the nose and lungs enumerated at days 1-14 post-challenge. Results: We show that prime-pull immunization with Boostrix plus BcfA (aPV/BcfA) generated IFNγ+ and IL-17+ CD4+ lung resident memory T cells (TRM), and CD4+IL-17+ TRM in the nose. In contrast, aPV alone delivered by the same route generated IL-5+ CD4+ resident memory T cells in the lungs and nose. Importantly, nasal colonization was only reduced in mice immunized with aPV/BcfA by the prime-pull regimen. Conclusions: These results suggest that TH17 polarized TRM generated by aPV/BcfA may reduce nasal colonization thereby preventing pertussis transmission and subsequent resurgence.


Subject(s)
Bordetella pertussis , Whooping Cough , Animals , Female , Male , Mice , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , CD4-Positive T-Lymphocytes , Interleukin-17 , Pertussis Vaccine , Whooping Cough/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL