Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Publication year range
1.
J Appl Microbiol ; 135(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39134510

ABSTRACT

Tuberculosis (TB) is a serious and fatal disease caused by Mycobacterium tuberculosis (Mtb). The World Health Organization reported an estimated 1.30 million TB-related deaths in 2022. The escalating prevalence of Mtb strains classified as being multi-, extensively, extremely, or totally drug resistant, coupled with the decreasing efficacies of conventional therapies, necessitates the development of novel treatments. As viruses that infect Mycobacterium spp., mycobacteriophages may represent a strategy to combat and eradicate drug-resistant TB. More exploration is needed to provide a comprehensive understanding of mycobacteriophages and their genome structure, which could pave the way toward a definitive treatment for TB. This review focuses on the properties of mycobacteriophages, their potential in diagnosing and treating TB, the benefits and drawbacks of their application, and their use in human health. Specifically, we summarize recent research on mycobacteriophages targeted against Mtb infection and newly developed mycobacteriophage-based tools to diagnose and treat diseases caused by Mycobacterium spp. We underscore the urgent need for innovative approaches and highlight the potential of mycobacteriophages as a promising avenue for developing effective diagnosis and treatment to combat drug-resistant Mycobacterium strains.


Subject(s)
Mycobacteriophages , Mycobacterium tuberculosis , Tuberculosis , Mycobacteriophages/genetics , Mycobacteriophages/physiology , Humans , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology
2.
Methods ; 194: 65-74, 2021 10.
Article in English | MEDLINE | ID: mdl-33774156

ABSTRACT

Base editing technology is an efficient tool for genome editing, particularly in the correction of base mutations. Diverse base editing systems were developed according to the dCas9 or nCas9 linked with different deaminase or reverse transcriptase in the editors, including ABEs, CBEs, PEs and dual-functional of base editor (such as CGBE1, A&C-BEmax, ACBE, etc.). Currently, Base editing technology has been widely applied to various fields such as microorganisms, plants, animals and medicine for basic research and therapeutics. Here, we reviewed the advancement of base editing technology. We also discussed the application of base editors in different areas in the future.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Genomics , Mutation
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(6): 893-898, 2020 Jun 30.
Article in Zh | MEDLINE | ID: mdl-32895194

ABSTRACT

OBJECTIVE: To analyze the association of integrinα5 (ITGA5) with grading of liver cancer and the overall patient survival and investigate the effects of integrin α5 (ITGA5) silencing on the proliferation, invasion and migration abilities of human liver cancer Bel-7404 cells. METHODS: UALCAN was used to analyze the expression of ITGA5 in liver cancer tissues and normal tissues, and expression in different grades of liver cancer tissues. GEPIA was used to analyze the relationship between ITGA5 expression and the survival of liver cancer patients through.The ITGA5 shRNA lentiviral vector was used to infect Bel-7404 cells to establish a cell line with stable ITGA5 silencing verified by Western blotting. Plate clone formation assay and Transwell assay were used to detect the proliferation, invasion and migration of Bel-7404 cells. The correlation between ITGA5 and PI3K in liver cancer tissues and control tissues was analyzed using Oncomine cancer specimen database. RESULTS: The expression of ITGA5 was significantly higher in liver cancer than in normal tissues (P < 0.05). The expression of ITGA5 was significantly lower in grade 1 than in grade 2 liver cancer, and also lower in grade 2 than in grade 3 liver cancer (P < 0.05). The patients with high ITGA5 expression had a significantly lower overall survival rate than those with low ITGA5 expression (P < 0.05). Plate clone formation assay showed that the clone formation rate was significantly lowered in Bel-7404 cells with ITGA5 silencing compared with the blank and negative control cells (P < 0.05). ITGA5 silencing significantly attenuated the migration of Bel-7404 cells as shown by Transwell assay (P < 0.05). ITGA5 and PI3K were both highly expressed and showed a positive correlation in liver cancer tissues (P < 0.05). CONCLUSIONS: ITGA5 is closely related to the progression of liver cancer and the patients' prognosis. ITGA5 silencing inhibits the proliferation, invasion and migration of liver cancer cells. ITGA5 promotes the liver cancer growth and metastasis possibly by regulating the PI3K signaling pathway.


Subject(s)
Cell Proliferation , Liver Neoplasms , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Humans , Integrin alpha5 , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases
SELECTION OF CITATIONS
SEARCH DETAIL