Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Neurochem ; 165(2): 259-267, 2023 04.
Article in English | MEDLINE | ID: mdl-36718502

ABSTRACT

Tryptophan (Trp) metabolism has been implicated in neuroinflammatory and neurodegenerative disorders, but its relationship with neuromyelitis optica spectrum disorder (NMOSD) is unclear. In this pilot study, cerebrospinal fluid (CSF) was prospectively collected from 26 NMOSD patients in relapse and 16 controls with noninflammatory diseases and 6 neurometabolites in the tryptophan metabolic pathway, including 5-hydroxytryptamine (5-HT), kynurenine (KYN), melatonin (MLT), 5-hydroxyindoleacetic acid (5HIAA), 3-hydroxy-o-aminobenzoic acid (3-HAA), and kynurenic acid (KYA), were measured by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The association of Trp metabolites with NMOSD and its clinical parameters was evaluated. The role of KYN, which is a Trp metabolite involved in the binding of NMOSD-IgG antibody to aquaporin 4 (AQP4), was also evaluated in vitro. CSF KYN was significantly decreased in patients with relapsing NMOSD compared to controls, and CSF KYN was associated with CSF white blood cells in NMOSD. In vitro experiments showed that NMOSD-IgG specifically recognized KYN, which reversed the NMOSD-IgG-induced downregulation of AQP4 expression. Our results show that abnormal Trp metabolism occurs in NMOSD and that KYN might be a potential target for the treatment of AQP4-IgG-positive NMOSD patients.


Subject(s)
Neuromyelitis Optica , Humans , Kynurenine , Tryptophan , Pilot Projects , Tandem Mass Spectrometry , Autoantibodies , Aquaporin 4 , Immunoglobulin G
2.
J Neurochem ; 164(2): 172-192, 2023 01.
Article in English | MEDLINE | ID: mdl-36334306

ABSTRACT

Acute ischemic stroke (AIS) induces cerebral endothelial cell death resulting in the breakdown of the blood-brain barrier (BBB). Endothelial cell autophagy acts as a protective mechanism against cell death. Autophagy is activated in the very early stages of ischemic stroke and declines after prolonged ischemia. Previous studies have shown that Rubicon can inhibit autophagy. The current study aimed to investigate whether continuous long-term ischemia can inhibit autophagy in endothelial cells after ischemic stroke by regulating the function of Rubicon and its underlying mechanism. Wild-type male C57BL/6J mice were subjected to transient middle cerebral artery occlusion (tMCAO). ROCK1, ROCK2, and NOX2 inhibitors were injected into male mice 1 h before the onset of tMCAO. Disease severity and BBB permeability were evaluated. bEnd.3 cells were cultured in vitro and subjected to oxygen-glucose deprivation (OGD). bEnd.3 cells were pretreated with or without ROCK1, ROCK2, or NOX2 inhibitors overnight and then subjected to OGD. Cell viability and permeability were also evaluated. The expression of Rubicon, ROCK1, and autophagy-related proteins were analyzed. Increased BBB permeability was correlated with Rubicon expression in tMCAO mice and Rubicon was upregulated in endothelial cells subjected to OGD. Autophagy was inhibited in endothelial cells after long-term OGD treatment and knockdown of Rubicon expression restored autophagy and viability in endothelial cells subjected to 6-h OGD. ROCK1 inhibition decreased the interaction between Beclin1 and Rubicon and restored cell viability and autophagy suppressed by 6-h OGD treatment in endothelial cells. Additionally, ROCK1 inhibition suppressed Rubicon, attenuated BBB disruption, and brain injury induced by prolonged ischemia in 6-h tMCAO mice. Prolonged ischemia induced the death of brain endothelial cells and the breakdown of the BBB, thus aggravating brain injury by increasing the interaction of ROCK1 and Rubicon with Beclin1 while inhibiting canonical autophagy. Inhibition of ROCK1 signaling in endothelial cells could be a promising therapeutic strategy to prolong the therapeutic time window in AIS.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Male , Mice , Animals , Endothelial Cells/metabolism , Ischemic Stroke/metabolism , Beclin-1/metabolism , Mice, Inbred C57BL , Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/metabolism , Brain Injuries/metabolism , Autophagy
3.
Dysphagia ; 38(4): 1128-1137, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36404369

ABSTRACT

Current treatments for severe chronic neurogenic dysphagia (SCND) are limited. Modified pharyngeal electrical stimulation (mPES) was modified from pharyngeal electrical stimulation (PES). This prospective study aimed to explore the efficacy and safety of mPES on SCND. 30 patients with severe chronic neurogenic dysphagia were recruited. mPES was administered to patients once daily until the functional oral intake scale score (FOIS) reach 3. Videofluoroscopic swallow study (VFSS), flexible endoscopic evaluation of swallowing (FEES), and high-resolution manometry (HRM) were utilized for evaluating the swallowing function. After mPES, 24 of 30 patients (80%) reached the endpoint (FOIS = 3) (P < 0.001). 3 of 6 tracheotomized patients (50%) removed the tracheal tube. The median number of mPES sessions for the 24 patients who met the criteria was 28 (17, 38) and the median period was 43 (29, 63) days. Moreover, a significant increase was observed in hypopharyngeal peak pressure (P = 0.015), hypopharyngeal contraction duration (P = 0.023), velopharyngeal peak pressure (P = 0.044), and velopharyngeal contraction duration (P = 0.031). A reduction was observed in PAS (P < 0.001), secretion (P = 0.001), vallecular residue (P < 0.001), left (P = 0.001), and right (P < 0.001) pyriform sinus residue. The median FOIS of 30 patients at 3-month follow-up was 5 (3, 6). No serious side effects were reported. mPES is a promising effective and safe therapeutic approach that is simple to use in patients with SCND.


Subject(s)
Deglutition Disorders , Humans , Deglutition Disorders/etiology , Deglutition Disorders/therapy , Prospective Studies , Pharynx , Deglutition/physiology , Electric Stimulation
4.
FASEB J ; 33(3): 4376-4387, 2019 03.
Article in English | MEDLINE | ID: mdl-30694693

ABSTRACT

Astrocytes mediate the destruction of the blood-brain barrier (BBB) during ischemic stroke (IS). IL-9 is a pleiotropic cytokine that we previously found to be highly expressed in peripheral blood mononuclear cells from patients with IS, and the presence of IL-9 receptors on astrocytes has been reported in the literature. Here, we detected the effect of IL-9 on astrocytes using an anti-IL-9-neutralizing antibody to treat rats with experimental stroke. Supernatants from astrocytes treated with or without oxygen-glucose deprivation and/or IL-9 were incubated with bEnd.3 cell monolayers after blocking the IL-9 receptor on the endothelium. Immunofluorescence staining and Western blot analyses were conducted to observe the change in tight junction proteins (TJPs) in bEnd.3 cells as well as the level of VEGF-A and possible signal pathways in astrocytes. We also applied middle cerebral artery occlusion (MCAO) models to determine the effect of anti-IL-9-neutralizing antibodies on IS. As a result, astrocyte-conditioned medium treated with IL-9 aggravated the disruption of the BBB accomplished by the degradation of TJPs in endothelial cells. In addition, IL-9 increased the level of VEGF-A in astrocytes, and blocking the effect of VEGF-A reversed the breakdown of the BBB. In the MCAO model, anti-IL-9-neutralizing antibody reduced the infarct volume and BBB destruction. Mechanistically, the anti-IL-9-neutralizing antibody repaired the damaged TJPs (zonula occludens 1, occludin, and claudin-5) and induced a decrease in VEGF-A expression in ischemic lateral brain tissue. In contrast, a local injection of recombinant murine IL-9 to the brain resulted in a marked up-regulation of VEGF-A in the striatum. In conclusion, anti-IL-9-neutralizing antibody can reduce the severity of IS partially by alleviating the destruction of the BBB via down-regulation of astrocyte-derived VEGF-A. This finding suggests that targeting IL-9 or VEGF-A could provide a new direction for the treatment of IS.-Tan, S., Shan, Y., Lin, Y., Liao, S., Zhang, B., Zeng, Q., Wang, Y., Deng, Z., Chen, C., Hu, X., Peng, L., Qiu, W., Lu, Z. Neutralization of IL-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A.


Subject(s)
Astrocytes/drug effects , Blood-Brain Barrier/drug effects , Interleukin-9/antagonists & inhibitors , Vascular Endothelial Growth Factor A/biosynthesis , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Astrocytes/metabolism , Cell Hypoxia , Cells, Cultured , Corpus Striatum/drug effects , Culture Media, Conditioned/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Glucose/pharmacology , Hypoxia-Ischemia, Brain , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Inflammation , Interleukin-9/administration & dosage , Interleukin-9/immunology , Interleukin-9/pharmacology , Male , Mice , Mice, Inbred C57BL , Oxygen/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , STAT3 Transcription Factor/biosynthesis , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , Tight Junction Proteins/metabolism , Up-Regulation/drug effects , Vascular Endothelial Growth Factor A/genetics
5.
Neurol Sci ; 41(6): 1497-1506, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31955350

ABSTRACT

PURPOSE: Visibility of deep medullary veins (DMVs) seen at SWI is predictive of poor prognosis in ischemic stroke. Few attentions have been paid to DMVs in atherosclerotic cerebral small vessel disease (aCSVD) which is attributed to long-term imbalanced microhemodynamics. We conducted this retrospective study to explore the association between DMVs profiles and aCSVD risk factors, neuroimaging markers. METHODS: Two hundred and two patients identified as aCSVD from January 2017 to March 2019 were included in the study. Their demographic, clinical, laboratory, and neuroimaging data were reviewed. The quantity and morphology of DMVs were assessed with a 5-grade (range 0~4) visual rating scale. Total CSVD burden was calculated with an ordinal "SVD score" (range 0~4). Spearman rank correlation and multivariable logistic regression analysis were performed to determine the association between DMV scale and CSVD markers. RESULTS: DMV scale showed strong positive correlation with CSVD burden (rs = 0.629, P < 0.001). Age (OR 1.078, 95% CI 1.015-1.145, P = 0.015) and hypertension (OR 2.629, 95% CI 1.024-6.749, P = 0.045) were two demographic risk factors for high DMV scale. Among CSVD neuroimaging markers, periventricular WMH (OR 2.925, 95% CI 1.464-5.845, P = 0.002), deep WMH (OR 2.872, 95% CI 1.174-7.022, P = 0.021), lacunae (OR 1.961, 95% CI 1.181-3.254, P = 0.009), and cerebral atrophy (OR 2.046, 95% CI 1.079-3.880, P = 0.028) were associated with high DMV scale after adjusting for clinical and metabolic confounders. CONCLUSION: Multifactorial association between DMV scale and epidemiological, radiological contributors of aCSVD suggests DMV's involved pathomechanism may participate in aCSVD development. Attach importance to DMV radiological profile in aCSVD will provide more neuroimaging information for diagnosis and prognosis.


Subject(s)
Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Veins/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , White Matter/blood supply , White Matter/diagnostic imaging , Aged , Biomarkers , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging/standards , Male , Middle Aged , Neuroimaging/standards , Retrospective Studies
6.
J Neuroinflammation ; 16(1): 242, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31779652

ABSTRACT

BACKGROUND: Preserving the integrity of the blood-brain barrier (BBB) is beneficial to avoid further brain damage after acute ischemic stroke (AIS). Astrocytes, an important component of the BBB, promote BBB breakdown in subjects with AIS by secreting inflammatory factors. The glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) protects the BBB and reduces brain inflammation from cerebral ischemia, and GLP-1R is expressed on astrocytes. However, the effect of Ex-4 on astrocytes in subjects with AIS remains unclear. METHODS: In the present study, we investigated the effect of Ex-4 on astrocytes cultured under oxygen-glucose deprivation (OGD) plus reoxygenation conditions and determined whether the effect influences bEnd.3 cells. We used various methods, including permeability assays, western blotting, immunofluorescence staining, and gelatin zymography, in vitro and in vivo. RESULTS: Ex-4 reduced OGD-induced astrocyte-derived vascular endothelial growth factor (VEGF-A), matrix metalloproteinase-9 (MMP-9), chemokine monocyte chemoattractant protein-1 (MCP-1), and chemokine C-X-C motif ligand 1 (CXCL-1). The reduction in astrocyte-derived VEGF-A and MMP-9 was related to the increased expression of tight junction proteins (TJPs) in bEnd.3 cells. Ex-4 improved neurologic deficit scores, reduced the infarct area, and ameliorated BBB breakdown as well as decreased astrocyte-derived VEGF-A, MMP-9, CXCL-1, and MCP-1 levels in ischemic brain tissues from rats subjected to middle cerebral artery occlusion. Ex-4 reduced the activation of the JAK2/STAT3 signaling pathway in astrocytes following OGD. CONCLUSION: Based on these findings, ischemia-induced inflammation and BBB breakdown can be improved by Ex-4 through an astrocyte-dependent manner.


Subject(s)
Astrocytes/drug effects , Blood-Brain Barrier/drug effects , Exenatide/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Infarction, Middle Cerebral Artery/metabolism , Inflammation/drug therapy , Stroke/metabolism , Animals , Astrocytes/metabolism , Blood-Brain Barrier/pathology , Chemokine CCL2/metabolism , Chemokine CXCL1/metabolism , Exenatide/therapeutic use , Infarction, Middle Cerebral Artery/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Matrix Metalloproteinase 9/metabolism , Rats , Rats, Sprague-Dawley , Stroke/pathology , Vascular Endothelial Growth Factor A/metabolism
7.
Clin Sci (Lond) ; 131(13): 1499-1513, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28550144

ABSTRACT

Interleukin (IL)-9 exerts a variety of functions in autoimmune diseases. However, its role in ischemic brain injury remains unknown. The present study explored the biological effects of IL-9 in ischemic stroke (IS). We recruited 42 patients newly diagnosed with IS and 22 age- and sex-matched healthy controls. The expression levels of IL-9 and percentages of IL-9-producing T cells, including CD3+CD4+IL-9+ and CD3+CD8+IL-9+ cells, were determined in peripheral blood mononuclear cells (PBMCs) obtained from patients and control individuals. We also investigated the effects of IL-9 on the blood-brain barrier (BBB) following oxygen-glucose deprivation (OGD) and the potential downstream signaling pathways. We found that patients with IS had higher IL-9 expression levels and increased percentages of IL-9-producing T cells in their PBMCs. The percentages of CD3+CD4+IL-9+ and CD3+CD8+IL-9+ T cells were positively correlated with the severity of illness. In in vitro experiments using bEnd.3 cells, exogenously administered IL-9 exacerbated the loss of tight junction proteins (TJPs) in cells subjected to OGD plus reoxygenation (RO). This effect was mediated via activation of IL-9 receptors, which increased the level of endothelial nitric oxide synthase (eNOS), as well as through up-regulated phosphorylation of signal transducer and activator of transcription 1 and 3 and down-regulated phosphorylated protein kinase B/phosphorylated phosphatidylinositol 3-kinase signaling. These results indicate that IL-9 has a destructive effect on the BBB following OGD, at least in part by inducing eNOS production, and raise the possibility of targetting IL-9 for therapeutic intervention in IS.


Subject(s)
Blood-Brain Barrier/immunology , Interleukin-9/immunology , Stroke/immunology , Adult , Aged , Aged, 80 and over , Animals , CD3 Complex/blood , Case-Control Studies , Cell Hypoxia/physiology , Cells, Cultured , DNA-Binding Proteins/blood , DNA-Binding Proteins/genetics , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Female , Gene Expression , Glucose/metabolism , Guanine Nucleotide Exchange Factors/blood , Guanine Nucleotide Exchange Factors/genetics , Humans , Interleukin-9/blood , Interleukin-9/genetics , Interleukin-9/pharmacology , Male , Mice , Middle Aged , Nitric Oxide Synthase Type III/biosynthesis , Nuclear Proteins/blood , Nuclear Proteins/genetics , Proto-Oncogene Proteins/blood , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , Severity of Illness Index , Stroke/pathology , T-Lymphocyte Subsets/immunology , Tight Junction Proteins/metabolism , Trans-Activators/blood , Trans-Activators/genetics , Young Adult
8.
J Neuroinflammation ; 13(1): 147, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27296014

ABSTRACT

BACKGROUND: Cholera toxin B subunit (CTB) has multifaceted immunoregulatory functions. Immunity plays an important role in the mechanism of stroke. However, little is known about whether CTB is beneficial for stroke. METHODS: CTB was administered intraperitoneally after ischemia to rats subjected to transient focal ischemia. Infarct volumes, body weight loss, and neurologic deficits were measured. Cytokines, microglia/macrophage activation, and transcriptional factors in the ischemic brain were tested. The mRNA expressions of IL-1ß and TNF-α were tested in the microglia/macrophage isolated from the ischemic hemisphere. γδT cells, IL-17-producing γδT cells, Th17 cells, and regulatory T (Treg) cells in the ischemic brain were tested. γδT cells and Treg cells in the peripheral blood were also evaluated. RESULTS: CTB reduced infarct volumes, neurologic deficits, and body weight loss after ischemia. At 24 h after ischemia, CTB downregulated the levels of IL-1ß, TNF-α, NF-kB p65, phosphorylated-ERK1/2, and microglia/macrophage activation and suppressed NF-kB binding activity, but did not affect the level of ERK1/2. The mRNA expressions of IL-1ß and TNF-α in the microglia/macrophage isolated from the ischemic hemisphere were suppressed after CTB therapy. In the ischemic hemisphere, CTB treatment reduced the levels of γδT cells, IL-17-producing γδT cells, and IL-17 at both 24 and 72 h after ischemia, while Th17 cells were not affected. After CTB treatment, the levels of Treg cells, TGF-ß, and IL-10 remained unchanged at 24 h and upregulated at 72 h after ischemia. Inactivation of Treg cells using anti-CD25 attenuated the increase of TGF-ß and IL-10 induced by CTB at 72 h after ischemia. In the peripheral blood, CTB increased Treg cells and suppressed γδT cells at 24 h after ischemia. And then at 72 h after ischemia, it increased Treg cells but did not impact γδT cells. CTB had no effect on cytokines, transcription factors, infiltrating γδT cells, and Treg cells in the brain of shams. In the peripheral blood of shams, CTB increased Treg cells at both 24 and 72 h, while it did not affect γδT cells. CONCLUSIONS: CTB decreased neurologic impairment and tissue injury after cerebral ischemia via its immunomodulatory functions, including inhibiting microglia/macrophage activation, suppressing γδT cells, and inducing production of Treg cells, thus regulating the secretion of related cytokines. Suppression of NF-kB and ERK1/2 pathways is involved in the neuroprotective mechanism of CTB.


Subject(s)
Cholera Toxin/therapeutic use , Cytokines/metabolism , Encephalitis/drug therapy , Encephalitis/etiology , Infarction, Middle Cerebral Artery/complications , Analysis of Variance , Animals , Anti-Inflammatory Agents , Brain Infarction/etiology , Cholera Toxin/pharmacology , Cytokines/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Electrophoretic Mobility Shift Assay , Flow Cytometry , Functional Laterality , Infarction, Middle Cerebral Artery/pathology , Macrophages/drug effects , Macrophages/pathology , Male , Microglia/drug effects , Microglia/pathology , Nervous System Diseases/etiology , RNA, Messenger/metabolism , Rats , Time Factors
9.
BMC Neurol ; 16(1): 162, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27601009

ABSTRACT

BACKGROUND: The underlying causes of minor stroke are difficult to assess. Here, we evaluate the reliability of the Chinese Ischemic Stroke Subclassification (CISS) system in patients with minor stroke, and compare it to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) system. METHODS: A total of 320 patients with minor stroke were retrospectively registered and categorized into different subgroups of the CISS and TOAST by two neurologists. Inter- and intra-rater agreement with the two systems were assessed with kappa statistics. RESULTS: The percentage of undetermined etiology (UE) cases in the CISS system was 77.3 % less than that in the TOAST system, which was statistically significant (P < 0.001). The percentage of large artery atherosclerosis (LAA) in the CISS system was 79.7 % more than that in the TOAST system, which was also statistically significant (P < 0.001). The kappa values for inter-examiner agreement were 0.898 (P = 0.031) and 0.732 (P = 0.022) for the CISS and TOAST systems, respectively. The intra-observer reliability indexes were moderate (0.569 for neurologist A, and 0.487 for neurologist B). CONCLUSIONS: The CISS and TOAST systems are both reliable in classifying patients with minor stroke. CISS classified more patients into known etiologic categories without sacrificing reliability.


Subject(s)
Severity of Illness Index , Stroke/classification , Stroke/diagnosis , Adult , Aged , Aged, 80 and over , Atherosclerosis/complications , Atherosclerosis/diagnosis , China , Female , Humans , Male , Middle Aged , Observer Variation , Reproducibility of Results , Retrospective Studies , Stroke/complications
10.
Brain Res ; 1832: 148846, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38432259

ABSTRACT

BACKGROUND: Post-stroke dysphagia (PSD) is a common symptom of stroke. Clinical complications of PSD include malnutrition and pneumonia. Clinical studies have shown that high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) can improve the swallowing function in stroke patients. However, few studies have elucidated the underlying molecular mechanisms. METHODS: A PSD rat model was established using transient middle cerebral artery occlusion (tMCAO). Rats were randomly divided into sham-operated groups, PSD groups, PSD + sham-rTMS groups, PSD + 5 Hz-rTMS groups, PSD + 10 Hz-rTMS groups and PSD + 20 Hz-rTMS groups. Rats were weighed and videofluoroscopic swallowing studies were conducted. Pulmonary inflammation, levels of substance P (SP) and calcitonin gene-related peptide (CGRP) in the serum, lung, and nucleus tractus solitarius (NTS), brain-derived neurotrophic factor (BDNF) and 5-hydroxytryptamine (5HT) in NTS were evaluated. RESULTS: Rats in the PSD group experienced weight loss, reduced bolus area and pharyngeal bolus speed, and increased pharyngeal transit time (PTT) and inter-swallow interval (ISI) on day 7 and day 14 after operation. Moreover, PSD rats showed pulmonary inflammation, reduced levels of SP in the lung and serum, increased levels of CGRP in the lung and NTS, reduced levels of BDNF and 5HT in the NTS. There was no significant difference between the PSD group and the PSD + sham-rTMS group in the results of weight and VFSS. Comparing with the PSD group, there significant increases in the bolus area, decreases in PTT of rats following 5 Hz rTMS intervention. HF-rTMS at 10 Hz significantly increased the weight, bolus area, pharyngeal bolus speed and decreased the PTT and ISI of rats. There were also significant increases in the bolus area (p < 0.01) and pharyngeal bolus speed, decreases in PTT and ISI of rats following 20 Hz rTMS intervention. Furthermore, compared with the PSD + 5 Hz-rTMS group, there were significant increases in the bolus area and pharyngeal bolus speed, decreases in ISI in the swallowing function of rats in the PSD + 10 Hz-rTMS group. Besides, compared with the PSD + 5 Hz-rTMS group, there were significant decreases in ISI in the swallowing function of rats in the PSD + 20 Hz-rTMS group. HF-rTMS at 10 Hz alleviated pulmonary inflammation, increased the levels of SP in the lung, serum, and NTS, CGRP in the serum and NTS, 5HT in the NTS of PSD rats. CONCLUSION: Compared with 5 Hz and 20 Hz rTMS, 10 Hz rTMS more effectively improved the swallowing function of rats with PSD. HF-rTMS at 10 Hz improved the swallowing function and alleviated pneumonia in PSD rats. The mechanism may be related to increased levels of SP in the lung, serum and NTS, levels of CGRP in the serum and NTS, 5HT in the NTS after HF-rTMS treatment.


Subject(s)
Deglutition Disorders , Pneumonia , Stroke , Humans , Animals , Rats , Deglutition Disorders/etiology , Deglutition Disorders/therapy , Deglutition/physiology , Transcranial Magnetic Stimulation/methods , Brain-Derived Neurotrophic Factor , Calcitonin Gene-Related Peptide , Pneumonia/therapy , Pneumonia/complications
11.
Behav Brain Res ; 467: 115018, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678971

ABSTRACT

Poststroke cognitive impairment (PSCI) is a common complication of stroke, but effective treatments are currently lacking. Repetitive transcranial magnetic stimulation (rTMS) is gradually being applied to treat PSCI, but there is limited evidence of its efficacy. To determine rTMS effects on PSCI, we constructed a transient middle cerebral artery occlusion (tMCAO) rat model. Rats were then grouped by random digital table method: the sham group (n = 10), tMCAO group (n = 10) and rTMS group (n = 10). The shuttle box and Morris water maze (MWM) tests were conducted to detect the cognitive functions of the rats. In addition, synaptic density and synaptic ultrastructural parameters, including the active zone length, synaptic cleft width, and postsynaptic density (PSD) thickness, were quantified and analyzed using an electron microscope. What's more, synaptic associated proteins, including PSD95, SYN, and BDNF were detected by western blot. According to the shuttle box and MWM tests, rTMS improved tMCAO rats' cognitive functions, including spatial learning and memory and decision-making abilities. Electron microscopy revealed that rTMS significantly increased the synaptic density, synaptic active zone length and PSD thickness and decreased the synaptic cleft width. The western blot results showed that the expression of PSD95, SYN, and BDNF was markedly increased after rTMS stimulation. Based on these results, we propose that 20 Hz rTMS can significantly alleviate cognitive impairment after stroke. The underlying mechanism might be modulating the synaptic plasticity and up-regulating the expression PSD95, SYN, and BDNF in the hippocampus.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Disease Models, Animal , Hippocampus , Neuronal Plasticity , Rats, Sprague-Dawley , Transcranial Magnetic Stimulation , Animals , Neuronal Plasticity/physiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Male , Rats , Hippocampus/metabolism , Brain Ischemia/therapy , Brain Ischemia/physiopathology , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/complications , Disks Large Homolog 4 Protein/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Maze Learning/physiology
12.
Front Cell Infect Microbiol ; 14: 1373737, 2024.
Article in English | MEDLINE | ID: mdl-38686094

ABSTRACT

Background: The mechanism by which high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) improves swallowing function by regulating intestinal flora remains unexplored. We aimed to evaluate this using fecal metabolomics and 16S rRNA sequencing. Methods: A Post-stroke dysphagia (PSD) rat model was established by middle cerebral artery occlusion. The magnetic stimulation group received HF-rTMS from the 7th day post-operation up to 14th day post-surgery. Swallowing function was assessed using a videofluoroscopic swallowing study (VFSS). Hematoxylin-eosin (H&E) staining was used to assess histopathological changes in the intestinal tissue. Intestinal flora levels were evaluated by sequencing the 16S rRNA V3-V4 region. Metabolite changes within the intestinal flora were evaluated by fecal metabolomics using liquid chromatography-tandem mass spectrometry. Results: VFSS showed that the bolus area and pharyngeal bolus speed were significantly decreased in PSD rats, while the bolus area increased and pharyngeal transit time decreased after HF-rTMS administration (p < 0.05). In the PSD groups, H&E staining revealed damaged surface epithelial cells and disrupted cryptal glands, whereas HF-rTMS reinforced the integrity of the intestinal epithelial cells. 16S rRNA sequencing indicated that PSD can disturb the intestinal flora and its associated metabolites, whereas HF-rTMS can significantly regulate the composition of the intestinal microflora. Firmicutes and Lactobacillus abundances were lower in the PSD group than in the baseline group at the phylum and genus levels, respectively; however, both increased after HF-rTMS administration. Levels of ceramides (Cer), free fatty acids (FA), phosphatidylethanolamine (PE), triacylglycerol (TAG), and sulfoquinovosyl diacylglycerol were increased in the PSD group. The Cer, FA, and DG levels decreased after HF-rTMS treatment, whereas the TAG levels increased. Peptococcaceae was negatively correlated with Cer, Streptococcus was negatively correlated with DG, and Acutalibacter was positively correlated with FA and Cer. However, these changes were effectively restored by HF-rTMS, resulting in recovery from dysphagia. Conclusion: These findings suggest a synergistic role for the gut microbiota and fecal metabolites in the development of PSD and the therapeutic mechanisms underlying HF-rTMS.


Subject(s)
Deglutition Disorders , Disease Models, Animal , Feces , Gastrointestinal Microbiome , Metabolomics , RNA, Ribosomal, 16S , Stroke , Animals , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Feces/chemistry , Rats , Metabolomics/methods , Stroke/complications , Stroke/therapy , Deglutition Disorders/therapy , Male , Transcranial Magnetic Stimulation/methods , Rats, Sprague-Dawley , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/metabolism
13.
Biol Pharm Bull ; 36(5): 764-71, 2013.
Article in English | MEDLINE | ID: mdl-23445942

ABSTRACT

Alzheimer's disease (AD), one of the most common forms of dementia, is primarily ascribed to the cholinergic deficits and neuronal dysfunction. Magnolol (Mag), a bioactivator extracted from Magnolia officinalis, has protective effects on cholinergic neurons, but the specific mechanism remains unknown. To further evaluate the therapeutic effects of Mag on the learning and memory impairment in a scopolamine (Scop)-induced mouse model, the passive avoidance and the Morris water maze tests, the measurement of the ratio of brain/hippocampus to body weight, activities of acetyl cholinesterase (AChE), superoxide dismutase (SOD), total nitric oxide synthase (total NOS) and the content of methane dicarboxylic aldehyde (MDA) in hippocampus homogenate as well as the immunefluorescence staining of the AChE positive nerve fibers were performed. Therapeutically treated with Mag, the impaired abilities of learning and memory of the Scop-induced mice were almost restored to the native levels. The restored AChE, total NOS and SOD activities and the MDA level were observed, with a relatively normal density of AChE positive nerve fibers in hippocampus CA3 molecular layer. The improving efficacy of Mag on learning and memory impairment induced by Scop is dose-dependent, indicating that Mag has potential neuroprotective effects against neuronal impairment and memory dysfunction induced by Scop in mice. The underlying mechanisms may be associated with the anti-oxidative effects of Mag and its protective effects on hippocampus cholinergic neurons.


Subject(s)
Avoidance Learning/drug effects , Biphenyl Compounds/therapeutic use , Lignans/therapeutic use , Maze Learning/drug effects , Memory Disorders/drug therapy , Neuroprotective Agents/therapeutic use , Acetylcholine/metabolism , Animals , Biphenyl Compounds/pharmacology , Brain/anatomy & histology , Brain/drug effects , Brain/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/physiology , Lignans/pharmacology , Male , Malondialdehyde/metabolism , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/physiopathology , Mice , Nerve Fibers/drug effects , Nerve Fibers/physiology , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase/metabolism , Organ Size/drug effects , Scopolamine , Superoxide Dismutase/metabolism
14.
Brain Sci ; 13(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36672100

ABSTRACT

Modified pharyngeal electrical stimulation (mPES) is a novel therapeutic method for patients with neurogenic dysphagia and tracheostomy. However, the underlying neural mechanisms are still unclear. This study aims to investigate the impact of mPES on swallowing-related neural networks and involuntary swallowing frequency using functional near-infrared spectroscopy (fNIRS). 20 healthy volunteers participated in this study, including two separate experimental paradigms. Experiment 1: Immediate effect observation, 20 participants (10 female; mean age 47.65 ± 10.48) were delivered with real and sham mPES in random order for 8 repetitions. fNIRS signals were collected during the whole period of Experiments 1. Swallowing frequency was assessed during sham/real mPES. Experiment 2: Prolonged effect observation, 7 out of the 20 participants (4 female; mean age 49.71 ± 6.26) completed real mPES for 5 sessions (1 session/day). 13 of the 20 participants withdrew for personal reasons. Hemodynamic changes were recorded by fNIRS on day 1 and 5. Results show that mPES evoked cortical activation over a distributed network in bilateral primary somatosensory, primary motor, somatosensory association cortex, pre-motor and supplementary motor area, dorsolateral prefrontal cortex, Broca's area, and supramarginal gyrus part of Wernicke's area. Meanwhile, the increased frequency of involuntary swallowing was associated with decreased frontopolar activation (frontopolar cortex: Channel 6, p = 0.024, r = -0.529; Channel 23, p = 0.019, r = -0.545). Furthermore, after five days of mPES, decreased cortical activations were observed in the right dorsolateral prefrontal and supramarginal gyrus part of Wernicke's area, and left frontopolar and M1 areas. Overall, these results might suggest that mPES could elicit changes in neuroplasticity that could reorganize the swallowing-related neural network and increase involuntary swallow frequency.

15.
Front Neurol ; 13: 939443, 2022.
Article in English | MEDLINE | ID: mdl-35968297

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune diseases of the central nervous system, and often influence optic nerve and medulla oblongata. Previous studies found out that brain abnormalities were not rare in these patients. Medulla oblongata (MO) was commonly involved and usually located at dorsal part. Patients who diagnosed NMOSD with MO lesions were more likely to have dysphagia. Previous reports indicated that the symptoms and signs of NMOSD patients could be controlled after immunosuppressive therapy. This patient was a 49-year-old Asian woman presented with recurrent vomiting and diagnosed NMOSD with MO involvement. However, after immunotherapy in other hospital, she still suffered from dysphagia. She then came to our department and completed videofluoroscopic swallowing study (VFSS) and high-resolution pharyngeal manometry (HRPM). Her UES was not opening with aspiration and the UES residue pressure was higher than normal range, we figured that she had cricopharyngeal (CP) dysfunction. Then the SLP gave her traditional treatment, including catheter balloon dilation. But she failed improvement after treatment for 2 weeks. Then the clinicians decided to inject botulinum toxin (BTX) into her CP muscles, which needed specific location and appropriate dosage. Her UES residue pressure decreased after three times BTX injection. During this time, her SLP adjusted the treatment strategies based on her VFSS and HRM results. Combined BTX injection with traditional treatment, she can now eat food orally without restrictions. This case report we presented can provide treatment strategies for similar patients with dysphagia.

17.
Front Neurol ; 13: 1006013, 2022.
Article in English | MEDLINE | ID: mdl-36299270

ABSTRACT

Introduction: Modified pharyngeal electrical stimulation (mPES) is a novel therapeutic modality for patients with neurogenic dysphagia. However, the underlying neural mechanism remains poorly understood. This study aimed to use functional near-infrared spectroscopy (fNIRS) to explore the influence of mPES on swallowing-related frequency-specific neural networks and ethology. Methods: Twenty-two healthy right-handed volunteers participated in the study. Each participant was randomly assigned to either the sham or the mPES group and provided a 10-min intervention program every day for 5 days. Oxyhemoglobin and deoxyhemoglobin concentration changes verified by fNIRS were recorded on days 1, 3, and 5. Five characteristic frequency signals (0.0095-2 Hz) were identified using the wavelet transform method. To calculate frequency-specific functional connectivity, wavelet phase coherence (WPCO) was adopted. Furthermore, behavioral performance was assessed pre- and post-mPES using a 150 ml-water swallowing stress test. Results: Compared with sham stimulation on day 1, the significantly decreased WPCO values were mainly associated with the dorsolateral prefrontal lobe, Broca's area, and middle temporal lobe. Compared with the sham mPES on day 1, the mPES showed a noticeable effect on the total swallow duration. Compared with the baseline, the WPCO values on days 3 and 5 showed a stepwise decrease in connectivity with the application of mPES. Furthermore, the decreased WPCO was associated with a shortened time per swallow after mPES. Conclusions: The mPES could modulate swallowing-related frequency-specific neural networks and evoke swallowing cortical processing more efficiently. This was associated with improved performance in a water swallowing stress test in healthy participants.

18.
Front Immunol ; 12: 720907, 2021.
Article in English | MEDLINE | ID: mdl-34421925

ABSTRACT

Objective: To explore the outcomes of NMOSD attacks and investigate serum biomarkers for prognosis and severity. Method: Patients with NMOSD attacks were prospectively and observationally enrolled from January 2019 to December 2020 at four hospitals in Guangzhou, southern China. Data were collected at attack, discharge and 1/3/6 months after acute treatment. Serum cytokine/chemokine and neurofilament light chain (NfL) levels were examined at the onset stage. Results: One hundred patients with NMOSD attacks were included. The treatment comprised intravenous methylprednisolone pulse therapy alone (IVMP, 71%), IVMP combined with apheresis (8%), IVMP combined with intravenous immunoglobulin (18%) and other therapies (3%). EDSS scores decreased significantly from a medium of 4 (interquartile range 3.0-5.5) at attack to 3.5 (3.0-4.5) at discharge, 3.5 (2.0-4.0) at the 1-month visit and 3.0 (2.0-4.0) at the 3-month visit (p<0.01 in all comparisons). The remission rate was 38.0% at discharge and 63.3% at the 1-month visit. Notably, relapse occurred in 12.2% of 74 patients by the 6-month follow-up. Higher levels of T helper cell 2 (Th2)-related cytokines, including interleukin (IL)-4, IL-10, IL-13, and IL-1 receptor antagonist, predicted remission at the 1-month visit (OR=9.33, p=0.04). Serum NfL levels correlated positively with onset EDSS scores in acute-phase NMOSD (p<0.001, R2 = 0.487). Conclusions: Outcomes of NMOSD attacks were generally moderate. A high level of serum Th2-related cytokines predicted remission at the 1-month visit, and serum NfL may serve as a biomarker of disease severity at attack. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04101058, identifier NCT04101058.


Subject(s)
Biomarkers , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/therapy , Adult , Biomarkers/blood , Cytokines/blood , Disease Management , Disease Progression , Disease Susceptibility , Female , Humans , Male , Middle Aged , Neurofilament Proteins/blood , Neuromyelitis Optica/blood , Neuromyelitis Optica/etiology , Patient Acuity , Prognosis , Prospective Studies , Recurrence , Symptom Assessment , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Treatment Outcome
19.
Aging (Albany NY) ; 12(12): 11781-11793, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32568100

ABSTRACT

Excess salt (NaCl) intake is closely related to a variety of central nervous system (CNS) diseases characterized by increased cerebral microvascular permeability. However, the link between a high salt diet (HSD) and the breakdown of tight junctions (TJs) remains unclear. In the present study, we found that high salt does not directly influence the barrier between endothelial cells, but it suppresses expression of TJ proteins when endothelial cells are co-cultured with astrocytes. This effect is independent of blood pressure, but depends on the astrocyte activation via the NFκB/MMP-9 signaling pathway, resulting in a marked increase in VEGF expression. VEGF, in turn, induces disruption of TJs by inducing phosphorylation and activation of ERK and eNOS. Correspondingly, the HSD-induced disruption of TJ proteins is attenuated by blocking VEGF using the specific monoclonal antibody Bevacizumab. These results reveal a new axis linking a HSD to increased cerebral microvascular permeability through a VEGF-initiated inflammatory response, which may be a potential target for preventing the deleterious effects of HSD on the CNS.


Subject(s)
Astrocytes/metabolism , Blood-Brain Barrier/pathology , Capillary Permeability/drug effects , Sodium Chloride, Dietary/adverse effects , Vascular Endothelial Growth Factor A/metabolism , Animals , Astrocytes/drug effects , Bevacizumab , Blood-Brain Barrier/cytology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/immunology , Capillary Permeability/immunology , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Down-Regulation/drug effects , Down-Regulation/immunology , Endothelial Cells , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , NF-kappa B/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Primary Cell Culture , Rats , Sodium Chloride, Dietary/administration & dosage , Specific Pathogen-Free Organisms , Tight Junction Proteins/metabolism , Tight Junctions/drug effects , Tight Junctions/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors
20.
Neuropsychiatr Dis Treat ; 15: 1009-1014, 2019.
Article in English | MEDLINE | ID: mdl-31114207

ABSTRACT

BACKGROUND: Cognitive impairment in patients with cerebral small vessel disease (CSVD) is common, but the pathogenic mechanism is not well understood. The situation of non-breathing-related sleep fragmentation in CSVD patients and its influence on cognitive impairment is not clear. The aim of this study was to investigate the influence of non-breathing-related sleep fragmentation on cognitive function in patients with CSVD. METHODS: A group of 89 CSVD patients without breathing-related sleep disorders in the Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University was enrolled. The patients underwent magnetic resonance scan, polysomnography, cognitive function evaluation using Montreal Cognitive Assessment scale (MoCA), and Mini-Mental State Examination. The patients were assigned to study group (arousal index [ArI] ≥26.8/hour) or control group (ArI <26.8/hour) based on the average level of ArI (mean =26.8, SD =7.5) at night, and the cognitive function of the patients in the two groups was analyzed. RESULTS: The total MoCA score, the subscale scores of visuospatial ability and delayed recall in the study group were significantly lower than that in the control group (P<0.05). The cognitive impairment measured by MoCA was positively related to ArI level and %N-3 sleep according to the results of logistic regression (P<0.05). CONCLUSION: Non-breathing-related sleep fragmentation is associated with cognitive impairment in CSVD patients, especially executive function and delayed recall ability.

SELECTION OF CITATIONS
SEARCH DETAIL