Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 662
Filter
1.
Nat Immunol ; 25(8): 1432-1444, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969872

ABSTRACT

Memory B cells (MBCs) differentiate into plasma cells (PCs) or germinal centers (GCs) upon antigen recall. How this decision is programmed is not understood. We found that the relative strength between two antagonistic transcription factors, B lymphocyte-induced maturation protein 1 (BLIMP1) and BTB domain and CNC homolog 2 (BACH2), progressively increases in favor of BLIMP1 in antigen-responding B cells through the course of primary responses. MBC subsets that preferentially produce secondary GCs expressed comparatively higher BACH2 but lower BLIMP1 than those predisposed for PC development. Skewing the BLIMP1-BACH2 balance in otherwise fate-predisposed MBC subsets could switch their fate preferences. Underlying the changing BLIMP1-over-BACH2 balance, we observed progressively increased accessibilities at chromatin loci that are specifically opened in PCs, particularly those that contain interferon-sensitive response elements (ISREs) and are controlled by interferon regulatory factor 4 (IRF4). IRF4 is upregulated by B cell receptor, CD40 or innate receptor signaling and it induces graded levels of PC-specifying epigenetic imprints according to the strength of stimulation. By analyzing history-stamped GC B cells, we found progressively increased chromatin accessibilities at PC-specific, IRF4-controlled gene loci over time. Therefore, the cumulative stimulation history of B cells is epigenetically recorded in an IRF4-dependent manner, determines the relative strength between BLIMP1 and BACH2 in individual MBCs and dictates their probabilities to develop into GCs or PCs upon restimulation.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cell Differentiation , Epigenesis, Genetic , Germinal Center , Immunologic Memory , Interferon Regulatory Factors , Memory B Cells , Plasma Cells , Positive Regulatory Domain I-Binding Factor 1 , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Animals , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Memory B Cells/immunology , Memory B Cells/metabolism , Plasma Cells/immunology , Plasma Cells/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Mice, Inbred C57BL , Signal Transduction , Lymphocyte Activation/genetics
2.
Immunity ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38889716

ABSTRACT

Expression of the transcriptional regulator ZFP318 is induced in germinal center (GC)-exiting memory B cell precursors and memory B cells (MBCs). Using a conditional ZFP318 fluorescence reporter that also enables ablation of ZFP318-expressing cells, we found that ZFP318-expressing MBCs were highly enriched with GC-derived cells. Although ZFP318-expressing MBCs constituted only a minority of the antigen-specific MBC compartment, their ablation severely impaired recall responses. Deletion of Zfp318 did not alter the magnitude of primary responses but markedly reduced MBC participation in recall. CD40 ligation promoted Zfp318 expression, whereas B cell receptor (BCR) signaling was inhibitory. Enforced ZFP318 expression enhanced recall performance of MBCs that otherwise responded poorly. ZFP318-deficient MBCs expressed less mitochondrial genes, had structurally compromised mitochondria, and were susceptible to reactivation-induced cell death. The abundance of ZFP318-expressing MBCs, instead of the number of antigen-specific MBCs, correlated with the potency of prime-boost vaccination. Therefore, ZFP318 controls the MBC recallability and represents a quality checkpoint of humoral immune memory.

3.
Mol Cell ; 75(1): 102-116.e9, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31128943

ABSTRACT

Transcription regulation underlies stem cell function and development. Here, we elucidate an unexpected role of an essential ribogenesis factor, WDR43, as a chromatin-associated RNA-binding protein (RBP) and release factor in modulating the polymerase (Pol) II activity for pluripotency regulation. WDR43 binds prominently to promoter-associated noncoding/nascent RNAs, occupies thousands of gene promoters and enhancers, and interacts with the Pol II machinery in embryonic stem cells (ESCs). Nascent transcripts and transcription recruit WDR43 to active promoters, where WDR43 facilitates releases of the elongation factor P-TEFb and paused Pol II. Knockdown of WDR43 causes genome-wide defects in Pol II release and pluripotency-associated gene expression. Importantly, auxin-mediated rapid degradation of WDR43 drastically reduces Pol II activity, precluding indirect consequences. These results reveal an RNA-mediated recruitment and feedforward regulation on transcription and demonstrate an unforeseen role of an RBP in promoting Pol II elongation and coordinating high-level transcription and translation in ESC pluripotency.


Subject(s)
Cation Transport Proteins/genetics , Chromatin/chemistry , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , RNA Polymerase II/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Transcription, Genetic , Zebrafish Proteins/genetics , Animals , Binding Sites , Cation Transport Proteins/metabolism , Cell Differentiation , Cell Line , Chromatin/metabolism , Embryo, Mammalian , Enhancer Elements, Genetic , Gene Deletion , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Biosynthesis , Proteolysis , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Zebrafish Proteins/metabolism
4.
Nature ; 580(7801): 147-150, 2020 04.
Article in English | MEDLINE | ID: mdl-32238924

ABSTRACT

Long noncoding RNAs (lncRNAs) and promoter- or enhancer-associated unstable transcripts locate preferentially to chromatin, where some regulate chromatin structure, transcription and RNA processing1-13. Although several RNA sequences responsible for nuclear localization have been identified-such as repeats in the lncRNA Xist and Alu-like elements in long RNAs14-16-how lncRNAs as a class are enriched at chromatin remains unknown. Here we describe a random, mutagenesis-coupled, high-throughput method that we name 'RNA elements for subcellular localization by sequencing' (mutREL-seq). Using this method, we discovered an RNA motif that recognizes the U1 small nuclear ribonucleoprotein (snRNP) and is essential for the localization of reporter RNAs to chromatin. Across the genome, chromatin-bound lncRNAs are enriched with 5' splice sites and depleted of 3' splice sites, and exhibit high levels of U1 snRNA binding compared with cytoplasm-localized messenger RNAs. Acute depletion of U1 snRNA or of the U1 snRNP protein component SNRNP70 markedly reduces the chromatin association of hundreds of lncRNAs and unstable transcripts, without altering the overall transcription rate in cells. In addition, rapid degradation of SNRNP70 reduces the localization of both nascent and polyadenylated lncRNA transcripts to chromatin, and disrupts the nuclear and genome-wide localization of the lncRNA Malat1. Moreover, U1 snRNP interacts with transcriptionally engaged RNA polymerase II. These results show that U1 snRNP acts widely to tether and mobilize lncRNAs to chromatin in a transcription-dependent manner. Our findings have uncovered a previously unknown role of U1 snRNP beyond the processing of precursor mRNA, and provide molecular insight into how lncRNAs are recruited to regulatory sites to carry out chromatin-associated functions.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , RNA, Long Noncoding/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Transcription, Genetic , Animals , Cell Line , High-Throughput Nucleotide Sequencing , Humans , Mice , Mouse Embryonic Stem Cells/metabolism , Mutagenesis , Nucleotide Motifs , RNA Polymerase II/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splice Sites , RNA, Long Noncoding/genetics , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism
5.
J Am Chem Soc ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092859

ABSTRACT

Searching for high energy-density electrode materials for sodium ion batteries has revealed Na-deficient intercalation compounds with lattice oxygen redox as promising high-capacity cathodes. However, anionic redox reactions commonly encountered poor electrochemical reversibility and unfavorable structural transformations during dynamic (de)sodiation processes. To address this issue, we employed lithium orbital hybridization chemistry to create Na-O-Li configuration in a prototype P2-layered Na43/60Li1/20Mg7/60Cu1/6Mn2/3O2 (P2-NaLMCM') cathode material. That Li+ ions, having low electronegativity, reside in the transition metal slabs serves to stimulate unhybridized O 2p orbitals to facilitate the stable capacity contribution of oxygen redox at high state of charge. The prismatic-type structure evolving to an intergrowth structure of the Z phase at high charging state could be simultaneously alleviated by reducing the electrostatic repulsion of O-O layers. As a consequence, P2-NaLMCM' delivers a high specific capacity of 183.8 mAh g-1 at 0.05 C and good cycling stability with a capacity retention of 80.2% over 200 cycles within the voltage range of 2.0-4.5 V. Our findings provide new insights into both tailoring oxygen redox chemistry and stabilizing dynamic structural evolution for high-energy battery cathode materials.

6.
Anal Chem ; 96(21): 8730-8739, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38743814

ABSTRACT

Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.


Subject(s)
Adenosine , Inosine , RNA Editing , Adenosine/analogs & derivatives , Adenosine/analysis , Adenosine/metabolism , Inosine/metabolism , Inosine/analogs & derivatives , Inosine/chemistry , Deamination , RNA/metabolism , RNA/genetics , RNA/analysis , Reverse Transcription , Humans
7.
Anal Chem ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075986

ABSTRACT

With the increasing demand for trace sample analysis, injecting trace samples into liquid chromatography-mass spectrometry (LC-MS) systems with minimal loss has become a major challenge. Herein, we describe an in situ LC-MS analytical probe, the Falcon probe, which integrates multiple functions of high-pressure sample injection without sample loss, high-efficiency LC separation, and electrospray. The main body of the Falcon probe is made of stainless steel and fabricated by the computer numerical control (CNC) technique, which has ultrahigh mechanical strength. By coupling a nanoliter-scale droplet reactor made of polyether ether ketone (PEEK) material, the Falcon probe-based LC-MS system was capable of operating at mobile-phase pressures up to 800 bar, which is comparable to those of conventional ultraperformance liquid chromatography (UPLC) systems. Using the probe pressing microamount in situ (PPMI) injection approach, the Falcon probe-based LC-MS system showed high separation efficiency and good repeatability with relative standard deviations (RSDs) of retention time and peak area of 1.8% and 9.9%, respectively, in peptide mixture analysis (n = 6). We applied this system to the analysis of a trace amount of 200 pg of HeLa protein digest and successfully identified an average of 766 protein groups (n = 5). By combining in situ sample pretreatment at the nanoliter range, we further applied the present system in single-cell proteomic analysis, and 241 protein groups were identified in single 293 cells, which preliminarily demonstrated its potential in the analysis of trace amounts of samples with complex compositions.

8.
Anal Chem ; 96(14): 5499-5508, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38547315

ABSTRACT

Characterizing the profiles of proteome and metabolome at the single-cell level is of great significance in single-cell multiomic studies. Herein, we proposed a novel strategy called one-shot single-cell proteome and metabolome analysis (scPMA) to acquire the proteome and metabolome information in a single-cell individual in one injection of LC-MS/MS analysis. Based on the scPMA strategy, a total workflow was developed to achieve the single-cell capture, nanoliter-scale sample pretreatment, one-shot LC injection and separation of the enzyme-digested peptides and metabolites, and dual-zone MS/MS detection for proteome and metabolome profiling. Benefiting from the scPMA strategy, we realized dual-omic analysis of single tumor cells, including A549, HeLa, and HepG2 cells with 816, 578, and 293 protein groups and 72, 91, and 148 metabolites quantified on average. A single-cell perspective experiment for investigating the doxorubicin-induced antitumor effects in both the proteome and metabolome aspects was also performed.


Subject(s)
Proteome , Tandem Mass Spectrometry , Humans , Proteome/metabolism , Chromatography, Liquid , Metabolome , HeLa Cells
9.
Biochem Biophys Res Commun ; 706: 149767, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38484570

ABSTRACT

Microglial activation is a critical factor in the pathogenesis and progression of neuroinflammatory diseases. Mild hypothermia, known for its neuroprotective properties, has been shown to alleviate microglial activation. In this study, we explore the differentially expressed (DE) mRNAs and long non-coding RNAs (lncRNAs) in BV-2 microglial cells under different conditions: normal temperature (CN), mild hypothermia (YT), normal temperature with lipopolysaccharide (LPS), and mild hypothermia with LPS (LPS + YT). Venn analysis revealed 119 DE mRNAs that were down-regulated in the LPS + YT vs LPS comparison but up-regulated in the CN vs LPS comparison, primarily enriched in Gene Ontology terms related to immune and inflammatory responses. Furthermore, through Venn analysis of YT vs CN and LPS + YT vs LPS comparisons, we identified 178 DE mRNAs and 432 DE lncRNAs. Among these transcripts, we validated the expression of Tent5c at the protein and mRNA levels. Additionally, siRNA-knockdown of Tent5c attenuated the expression of pro-inflammatory genes (TNF-α, IL-1ß, Agrn, and Fpr2), cellular morphological changes, NLRP3 and p-P65 protein levels, immunofluorescence staining of p-P65 and number of cells with ASC-speck induced by LPS. Furthermore, Tent5c overexpression further potentiated the aforementioned indicators in the context of mild hypothermia with LPS treatment. Collectively, our findings highlight the significant role of Tent5c down-regulation in mediating the anti-inflammatory effects of mild hypothermia.


Subject(s)
Hypothermia , RNA, Long Noncoding , Humans , Lipopolysaccharides/pharmacology , Down-Regulation , Microglia/metabolism , Hypothermia/metabolism , RNA, Long Noncoding/metabolism
10.
Small ; 20(7): e2305658, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37798674

ABSTRACT

Defect engineering is promising to tailor the physical properties of 2D semiconductors for function-oriented electronics and optoelectronics. Compared with the extensively studied 2D binary materials, the origin of defects and their influence on physical properties of 2D ternary semiconductors are not clarified. Here, the effect of defects on the electronic structure and optical properties of few-layer hexagonal Znln2 S4 is thoroughly studied via versatile spectroscopic tools in combination with theoretical calculations. It is demonstrated that the Zn-In antistructural defects induce the formation of a series of donor and acceptor energy levels and sulfur vacancies induce donor energy levels, leading to rich recombination paths for defect emission and extrinsic absorption. Impressively, the emission of donor-acceptor pair in Znln2 S4 can be significantly tailored by electrostatic gating due to efficient tunability of Fermi level (Ef ). Furthermore, the layer-dependent dipole orientation of defect emission in Znln2 S4 is directly revealed by back focal plane imagining, where it presents obviously in-plane dipole orientation within a dozen-layer thickness of Znln2 S4 . These unique features of defects in Znln2 S4 including extrinsic absorption, rich recombination paths, gate tunability, and in-plane dipole orientation are definitely a benefit to the advanced orientation-functional optoelectronic applications.

11.
Nat Chem Biol ; 18(1): 70-80, 2022 01.
Article in English | MEDLINE | ID: mdl-34916619

ABSTRACT

An RNA-involved phase-separation model has been proposed for transcription control. However, the molecular links that connect RNA to the transcription machinery remain missing. Here we find that RNA-binding proteins (RBPs) constitute half of the chromatin proteome in embryonic stem cells (ESCs), some being colocalized with RNA polymerase (Pol) II at promoters and enhancers. Biochemical analyses of representative RBPs show that the paraspeckle protein PSPC1 inhibits the RNA-induced premature release of Pol II, and makes use of RNA as multivalent molecules to enhance the formation of transcription condensates and subsequent phosphorylation and release of Pol II. This synergistic interplay enhances polymerase engagement and activity via the RNA-binding and phase-separation activities of PSPC1. In ESCs, auxin-induced acute degradation of PSPC1 leads to genome-wide defects in Pol II binding and nascent transcription. We propose that promoter-associated RNAs and their binding proteins synergize the phase separation of polymerase condensates to promote active transcription.


Subject(s)
RNA Polymerase II/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic , Gene Expression Regulation , Phosphorylation , Promoter Regions, Genetic , Protein Binding
12.
Neurochem Res ; 49(4): 1105-1120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38289520

ABSTRACT

Reduced myelin stability observed in the early stages of Alzheimer's disease leads to spatial learning and memory impairment. Exercise has been shown to protect nerves, reduce the risk of Alzheimer's disease, and strengthen synaptic connectivity. However, the underlying mechanisms of how exercise can promote myelin repair and coordinate inflammation and proliferation are still uncertain. In this study, we conducted histological and biochemical assays of cortical lysates after behavioral testing to detect pathological changes, myelin sheath thickness, and mRNA and protein levels. It is notable that D-galactose model mice exhibited elevated miRNA-34a levels, overactive astrocytes, decreased myelin staining scores, increased apoptosis, and decreased synaptic plasticity in the brain. Significantly, after eight weeks of exercise, we observed improvements in LFB scores, NeuN( +) neuron counts, and myelin basic protein (MBP) expression. Additionally, exercise promoted the expression of oligodendrocyte markers Olig2 and PDFGR-α associated with brain proliferation, and improved spatial cognitive function. Furthermore, it decreased the inflammation caused by astrocyte secretions (TNF-α, Cox-2, CXCL2). Interestingly, we also observed downregulation of miR-34a and activation of the TAN1/PI3K/CREB signaling pathway. Our data shed light on a previously unsuspected mechanism by which exercise reduces miR-34a levels and protects neuronal function and survival by preventing excessive demyelination and inflammatory infiltration in the CNS.


Subject(s)
Alzheimer Disease , MicroRNAs , Animals , Mice , Alzheimer Disease/metabolism , Astrocytes/metabolism , Inflammation/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myelin Sheath/metabolism , Neuroinflammatory Diseases , Oligodendroglia/metabolism
13.
J Neurooncol ; 167(2): 285-292, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38381257

ABSTRACT

PURPOSE: This study retrospectively analyzes cases of diffuse midline glioma treated with radiotherapy, with the aim of investigating the prognosis of the tumor and its influencing factors. METHODS: From January 2018 to November 2022, we treated 64 patients who were pathologically diagnosed with diffuse midline glioma. Among them, 41 underwent surgical resection, and 23 underwent biopsy procedures. All patients received postoperative radiotherapy. We followed up with the patients to determine the overall survival rate and conducted univariate and multivariate analyses on relevant indicators. RESULTS: The median survival time for the entire patient group was 33.3 months, with overall survival rates of 92.9%, 75.4%, and 45.0% at 1 year, 2 years, and 3 years, respectively. Univariate and multivariate analyses indicated that older patients had a better prognosis. CONCLUSION: Patient age is an independent prognostic factor for patients with diffuse midline glioma undergoing radiation therapy.


Subject(s)
Brain Neoplasms , Glioma , Humans , Prognosis , Glioma/diagnosis , Glioma/therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Retrospective Studies
14.
BMC Infect Dis ; 24(1): 577, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862875

ABSTRACT

BACKGROUND: Sepsis is a common and severe disease with a high mortality rate in intensive care unit (ICU). The hemoglobin (HGB) level is a key parameter for oxygen supply in sepsis. Although HGB is associated with the progression of inflammation in sepsis patients, its role as a marker following sepsis treatment remains unclear. Here, we studied the correlation between early temporal changes in HGB levels and long-term mortality rates in septic patients. METHOD: In this retrospective study of data on patients with sepsis from the Medical Information Mart for Intensive Care (MIMIC) IV database, the outcome was long-term mortality. Patients were divided based on the cut-off of the HGB percentage for receiver operating characteristic (ROC) curve calculation. Kaplan-Meier (KM) survival curves and Cox proportional hazards regression models were used to analyse the associations between groups and outcomes. Propensity score matching (PSM) was used to verify the results. RESULTS: In this study, 2042 patients with sepsis and changes in HGB levels at day 4 after admission compared to day 1 were enrolled and divided into two groups: group 1 (n = 1147) for those with reduction of HGB < 7% and group 2 (n = 895) for those with dropping ≥ 7%. The long-term survival chances of sepsis with less than a 7% reduction in the proportion of HGB at day four were significantly higher than those of patients in the group with a reduction of 7% or more. After adjusting for covariates in the Cox model, the hazard ratios (HRs) with 95% confidence intervals (CIs) for long-term all-cause mortality in the group with a reduction of 7% or more were as follows: 180 days [HR = 1.41, 95% CI (1.22 to 1.63), P < 0.001]; 360 days [HR = 1.37, 95% CI (1.21 to 1.56), P < 0.001]; 540 days [HR = 1.35, 95% CI (1.20 to 1.53), P < 0.001]; 720 days [HR = 1.45, 95% CI (1.29 to 1.64), P < 0.001]. Additionally, the long-term survival rates, using Kaplan-Meier analysis, for the group with a reduction of 7% or more were lower compared to the group with less than 7% reduction at 180 days (54.3% vs. 65.3%, P < 0.001), 360 days (42.3% vs. 50.9%, P < 0.001), 540 days (40.2% vs. 48.6%, P < 0.001), and 720 days (35.5% vs. 46.1%, P < 0.001). The same trend was obtained after using PSM. CONCLUSION: A ≥ 7% decrease in HGB levels on Day 4 after admission was associated with worse long-term prognosis in sepsis patients admitted to the ICU.


Subject(s)
Hemoglobins , Intensive Care Units , Sepsis , Humans , Sepsis/mortality , Sepsis/blood , Retrospective Studies , Male , Female , Middle Aged , Hemoglobins/analysis , Aged , Intensive Care Units/statistics & numerical data , Kaplan-Meier Estimate , Proportional Hazards Models , ROC Curve , Biomarkers/blood
15.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 150-154, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814224

ABSTRACT

We aimed to observe the effects of adipose-derived mesenchymal stem cells (ADSCs) on T helper 17 (Th17)/regulatory T cells (Treg) and T-box transcription factor (T-bet)/GATA-binding protein 3 (GATA-3) in model mice with primary immune thrombocytopenia (ITP). 32 BALB/C mice were selected. ADSCs were isolated from 2 mice and cultured. The other 30 mice were randomly divided into the normal control group, the ITP model control group, and the ITP experimental group. Platelet count (PLT), Th17/Treg cells, related serum cytokines [interleukin-6 (IL-6), IL-17A, IL-10, and transforming growth factor ß1 (TGF-ß1)], T-bet and GATA-3 mRNA levels in peripheral blood mononuclear cells (PBMCs) in the 3 groups were detected. PLT and Treg in the ITP experimental group were significantly lower than those in the normal control group (P<0.05), but significantly higher than those in the ITP model control group (P<0.05). Th17 and Th17/Treg in the ITP experimental group were significantly higher than those in the normal control group (P<0.05), but significantly lower than those in the ITP model control group (P<0.05). Serum IL-6 and IL-17A levels, and T-bet mRNA levels in the ITP experimental group were significantly higher than those in the normal control group (P<0.05), but significantly lower than those in the ITP model control group (P<0.05). Serum IL-10 and TGF-ß levels, and GATA-3 mRNA levels in the ITP experimental group were significantly lower than those in the normal control group (P<0.05), but significantly higher than those in the ITP model control group (P<0.05). ADSCs can effectively regulate Th17/Treg balance and improve T-bet/GATA-3 mRNA expression levels in ITP model mice.


Subject(s)
Disease Models, Animal , GATA3 Transcription Factor , Mesenchymal Stem Cells , Mice, Inbred BALB C , T-Box Domain Proteins , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Female , Male , Mice , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cytokines/metabolism , Cytokines/blood , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Interleukin-10/genetics , Interleukin-10/blood , Interleukin-10/metabolism , Interleukin-17/blood , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-6/blood , Interleukin-6/metabolism , Interleukin-6/genetics , Mesenchymal Stem Cells/metabolism , Platelet Count , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/metabolism , Th17 Cells/immunology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/blood
16.
Neurol Sci ; 45(2): 547-556, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37673807

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is the most common type of dementia. Amnestic mild cognitive impairment (aMCI), a pre-dementia stage is an important stage for early diagnosis and intervention. This study aimed to investigate the diagnostic value of qEEG, APOA-I, and APOE ɛ4 allele in aMCI and AD patients and found the correlation between qEEG (Delta + Theta)/(Alpha + Beta) ratio (DTABR) and different cognitive domains. METHODS: All participants were divided into three groups: normal controls (NCs), aMCI, and AD, and all received quantitative electroencephalography (qEEG), neuropsychological scale assessment, apolipoprotein epsilon 4 (APOE ɛ4) alleles, and various blood lipid indicators. Different statistical methods were used for different data. RESULTS: The cognitive domains except executive ability were all negatively correlated with DTABR in different brain regions while executive ability was positively correlated with DTABR in several brain regions, although without statistical significance. The consequences confirmed that the DTABR of each brain area were related to MMSE, MoCA, instantaneous memory, and the language ability (p < 0.05), and the DTABR in the occipital area was relevant to all cognitive domains (p < 0.01) except executive function (p = 0.272). Also, occipital DTABR was most correlated with language domain when tested by VFT with a moderate level (r = 0.596, p < 0.001). There were significant differences in T3, T5, and P3 DTABR between both AD and NC and aMCI and NCs. As for aMCI diagnosis, the maximum AUC was achieved when using T3 combined with APOA-I and APOE ε4 (0.855) and the maximum AUC was achieved when using T5 combined with APOA-I and APOE ε4 (0.889) for AD diagnosis. CONCLUSION: These findings highlight that APOA-I, APOE ɛ4, and qEEG play an important role in aMCI and AD diagnosis. During AD continuum, qEEG DTABR should be taken into consideration for the early detection of AD risk.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Apolipoprotein A-I/genetics , Alleles , Apolipoprotein E4/genetics , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Apolipoproteins , Neuropsychological Tests , Electroencephalography , Apolipoproteins E/genetics
17.
Dermatol Surg ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38748664

ABSTRACT

BACKGROUND: Alopecia significantly affects the mental health and social relationship of women since childbearing age, highlighting the need for a safe, effective, and convenient treatment. METHODS: The authors have conducted a prospective self-controlled trial involving 15 female patients at childbearing age with alopecia. These patients received a subcutaneous scalp injection of platelet-rich plasma once every 4 weeks for 3 treatments in total. Outcome measurements were included below: changes in hair density (hair/cm2), hair follicle density (hair follicle/cm2), and overall photographic assessment (improved or not) at 4, 12, and 24 weeks right after the first treatment. RESULTS: Comparing the photographs taken before and after the intervention, 67% of patients' hair density increased from 151 ± 39.82 hairs/cm2 (preintervention) to 170.96 ± 37.14 hairs/cm2 (at 24-week follow-up), representing an approximate increase of 19 hairs/cm2. Meanwhile, hair follicle density increased by approximately 15 follicles/cm2 after 24 weeks since the first treatment, rising from 151.04 ± 41.99 follicles/cm2 to 166.72 ± 37.13 follicles/cm2. The primary adverse reactions observed were local swelling and pain due to injections. CONCLUSION: Local injection of nonactivated platelet-rich plasma with low leukocytes concentration could be an effective strategy to alleviate alopecia symptoms in female patients.

18.
J Formos Med Assoc ; 123(1): 36-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37491179

ABSTRACT

BACKGROUND/PURPOSE: In 2020, metabolic Associated Fatty Liver Disease (MAFLD) was proposed to replace non-alcoholic fatty liver disease (NAFLD) with new diagnostic criteria. The prevalence and clinical outcomes of MAFLD subtypes remained unclear. METHODS: The participants from Taiwan bio-bank cohort were included. MAFLD was defined as the presence of fatty liver, plus any of the following three conditions: overweight/obesity, diabetes mellitus (DM), or metabolic dysfunction. The patients with positive HBsAg or anti-HCV were considered as chronic HBV or HCV infection. NAFLD fibrosis score (NFS) > 0.676 plus fibrosis 4 (FIB-4) score > 2.67 was defined as advanced liver fibrosis. Atherosclerosis was diagnosed as having carotid plaques on duplex ultrasounds. The clinical outcomes were assessed among four subtypes of MAFLD including DM, obesity, chronic HBV infection, and chronic HCV infection. RESULTS: A total of 21,885 participants (mean age 55.34 ± 10.31; 35.69% males) were included in the final analysis. Among them, 38.83% were diagnosed with MAFLD. The prevalence of MAFLD was 66.95% in DM patients, 65.07% in obese participants, 33.74% in chronic HBV patients, and 30.23% in chronic HCV patients. Logistic regression analysis showed that the subtypes of DM and chronic HCV infection were associated with an increased risk of advanced liver fibrosis in MAFLD patients. Additionally, the subtypes of DM and lean were associated with an increased risk of atherosclerosis, but a decreased risk of atherosclerosis in the subtype of chronic HBV infection. CONCLUSION: This population-based study proves the concept that subtypes of MAFLD can help risk stratification of clinical outcomes.


Subject(s)
Atherosclerosis , Hepatitis B, Chronic , Hepatitis C , Non-alcoholic Fatty Liver Disease , Male , Humans , Middle Aged , Aged , Female , Non-alcoholic Fatty Liver Disease/epidemiology , Prevalence , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/epidemiology , Liver Cirrhosis/epidemiology , Obesity/complications , Obesity/epidemiology
19.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256157

ABSTRACT

Systemic lupus erythematosus (SLE) is a prototype inflammatory autoimmune disease, characterized by breakdown of immunotolerance to self-antigens. Renal involvement, known as lupus nephritis (LN), is one of the leading causes of morbidity and a significant contributor to mortality in SLE. Despite current pathophysiological advances, further studies are needed to fully understand complex mechanisms underlying the development and progression of LN. Transcription factors (TFs) are proteins that regulate the expression of genes and play a crucial role in the development and progression of LN. The mechanisms of TF promoting or inhibiting gene expression are complex, and studies have just begun to reveal the pathological roles of TFs in LN. Understanding TFs in the pathogenesis of LN can provide valuable insights into this disease's mechanisms and potentially lead to the development of targeted therapies for its management. This review will focus on recent findings on TFs in the pathogenesis of LN and newly developed TF-targeted therapy in renal inflammation.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Lupus Nephritis/etiology , Lupus Nephritis/genetics , Transcription Factors/genetics , Autoantigens
20.
Sheng Li Xue Bao ; 76(1): 119-127, 2024 Feb 25.
Article in Zh | MEDLINE | ID: mdl-38444137

ABSTRACT

Neural synchronization activity is considered a key aspect of information processing in the nervous system. Local synchronization within different frequency ranges and inter-regional synchronization are ubiquitous and related to various behavioral and cognitive functions. As memory is a higher cognitive function of the brain, the formation and consolidation of memory are closely related to neural synchronization activity. This article provides an overview of the research progress on the relationship between neural synchronization activity and memory consolidation, focusing primarily on the neuro-oscillatory activities across multiple brain regions during non-rapid eye movement (NREM) sleep in vivo, as well as the synchronous burst activity in cultured neural networks in vitro. Finally, we analyzed the existing issues in current research and provided a perspective on future relevant studies.


Subject(s)
Memory Consolidation , Eye Movements , Cognition , Brain , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL