Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Nat Immunol ; 22(5): 571-585, 2021 05.
Article in English | MEDLINE | ID: mdl-33903764

ABSTRACT

Fibroblastic reticular cells (FRCs) are specialized stromal cells that define tissue architecture and regulate lymphocyte compartmentalization, homeostasis, and innate and adaptive immunity in secondary lymphoid organs (SLOs). In the present study, we used single-cell RNA sequencing (scRNA-seq) of human and mouse lymph nodes (LNs) to identify a subset of T cell-zone FRCs defined by the expression of Gremlin1 (Grem1) in both species. Grem1-CreERT2 knock-in mice enabled localization, multi-omics characterization and genetic depletion of Grem1+ FRCs. Grem1+ FRCs primarily localize at T-B cell junctions of SLOs, neighboring pre-dendritic cells and conventional dendritic cells (cDCs). As such, their depletion resulted in preferential loss and decreased homeostatic proliferation and survival of resident cDCs and compromised T cell immunity. Trajectory analysis of human LN scRNA-seq data revealed expression similarities to murine FRCs, with GREM1+ cells marking the endpoint of both trajectories. These findings illuminate a new Grem1+ fibroblastic niche in LNs that functions to maintain the homeostasis of lymphoid tissue-resident cDCs.


Subject(s)
Dendritic Cells, Follicular/immunology , Fibroblasts/immunology , Lymph Nodes/immunology , Stromal Cells/immunology , Aged , Animals , Apoptosis/genetics , Apoptosis/immunology , Cell Proliferation/genetics , Cell Survival/genetics , Cell Survival/immunology , Dendritic Cells, Follicular/metabolism , Female , Fibroblasts/metabolism , Gene Expression Regulation/immunology , Gene Knock-In Techniques , Humans , Immunity, Cellular/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lymph Nodes/cytology , Male , Mice , Mice, Transgenic , RNA-Seq , Single-Cell Analysis , Stromal Cells/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
Nat Immunol ; 20(9): 1174-1185, 2019 09.
Article in English | MEDLINE | ID: mdl-31406377

ABSTRACT

Classical type 1 dendritic cells (cDC1s) are required for antiviral and antitumor immunity, which necessitates an understanding of their development. Development of the cDC1 progenitor requires an E-protein-dependent enhancer located 41 kilobases downstream of the transcription start site of the transcription factor Irf8 (+41-kb Irf8 enhancer), but its maturation instead requires the Batf3-dependent +32-kb Irf8 enhancer. To understand this switch, we performed single-cell RNA sequencing of the common dendritic cell progenitor (CDP) and identified a cluster of cells that expressed transcription factors that influence cDC1 development, such as Nfil3, Id2 and Zeb2. Genetic epistasis among these factors revealed that Nfil3 expression is required for the transition from Zeb2hi and Id2lo CDPs to Zeb2lo and Id2hi CDPs, which represent the earliest committed cDC1 progenitors. This genetic circuit blocks E-protein activity to exclude plasmacytoid dendritic cell potential and explains the switch in Irf8 enhancer usage during cDC1 development.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Dendritic Cells/cytology , Enhancer Elements, Genetic/genetics , Inhibitor of Differentiation Protein 2/metabolism , Interferon Regulatory Factors/metabolism , Zinc Finger E-box Binding Homeobox 2/metabolism , Animals , Cell Differentiation/immunology , Cells, Cultured , Gene Expression Regulation, Developmental/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Repressor Proteins/metabolism , Stem Cells/cytology
3.
Cell ; 154(5): 1036-1046, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23993095

ABSTRACT

Although RAF kinases are critical for controlling cell growth, their mechanism of activation is incompletely understood. Recently, dimerization was shown to be important for activation. Here we show that the dimer is functionally asymmetric with one kinase functioning as an activator to stimulate activity of the partner, receiver kinase. The activator kinase did not require kinase activity but did require N-terminal phosphorylation that functioned allosterically to induce cis-autophosphorylation of the receiver kinase. Based on modeling of the hydrophobic spine assembly, we also engineered a constitutively active mutant that was independent of Ras, dimerization, and activation-loop phosphorylation. As N-terminal phosphorylation of BRAF is constitutive, BRAF initially functions to activate CRAF. N-terminal phosphorylation of CRAF was dependent on MEK, suggesting a feedback mechanism and explaining a key difference between BRAF and CRAF. Our work illuminates distinct steps in RAF activation that function to assemble the active conformation of the RAF kinase.


Subject(s)
raf Kinases/chemistry , raf Kinases/metabolism , Allosteric Regulation , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Line , Dimerization , Enzyme Activation , Humans , Mice , Models, Molecular , Molecular Sequence Data , Mutation , Phosphorylation , Protein Conformation , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/metabolism , Sequence Alignment , Tryptophan/metabolism , raf Kinases/genetics
4.
Mol Cell ; 69(4): 551-565.e7, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29452636

ABSTRACT

Inflammatory responses mediated by NOD2 rely on RIP2 kinase and ubiquitin ligase XIAP for the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinases (MAPKs), and cytokine production. Herein, we demonstrate that selective XIAP antagonism blocks NOD2-mediated inflammatory signaling and cytokine production by interfering with XIAP-RIP2 binding, which removes XIAP from its ubiquitination substrate RIP2. We also establish that the kinase activity of RIP2 is dispensable for NOD2 signaling. Rather, the conformation of the RIP2 kinase domain functions to regulate binding to the XIAP-BIR2 domain. Effective RIP2 kinase inhibitors block NOD2 signaling by disrupting RIP2-XIAP interaction. Finally, we identify NOD2 signaling and XIAP-dependent ubiquitination sites on RIP2 and show that mutating these lysine residues adversely affects NOD2 pathway signaling. Overall, these results reveal a critical role for the XIAP-RIP2 interaction in NOD2 inflammatory signaling and provide a molecular basis for the design of innovative therapeutic strategies based on XIAP antagonists and RIP2 kinase inhibitors.


Subject(s)
Aminoquinolines/pharmacology , Inflammation/prevention & control , Nod2 Signaling Adaptor Protein/antagonists & inhibitors , Protein Interaction Domains and Motifs/drug effects , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Sulfones/pharmacology , X-Linked Inhibitor of Apoptosis Protein/metabolism , Animals , Cells, Cultured , Humans , Inflammation/metabolism , Inflammation/pathology , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Signal Transduction , Ubiquitin/metabolism , Ubiquitination , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors
5.
Am J Physiol Renal Physiol ; 327(2): F235-F244, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38867676

ABSTRACT

Chronic kidney disease (CKD) is characterized by inflammation and fibrosis in the kidney. Renal biopsies and estimated glomerular filtration rate (eGFR) remain the standard of care, but these endpoints have limitations in detecting the stage, progression, and spatial distribution of fibrotic pathology in the kidney. MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo both in clinical and preclinical studies. However, these imaging studies have not systematically identified fibrosis particularly deeper in the kidney where biopsy sampling is limited, or completed an extensive analysis of whole organ histology, blood biomarkers, and gene expression to evaluate the relative strengths and weaknesses of MRI for evaluating renal fibrosis. In this study, we performed DTI in the sodium oxalate mouse model of CKD. The DTI parameters fractional anisotropy, apparent diffusion coefficient, and axial diffusivity were compared between the control and oxalate groups with region of interest (ROI) analysis to determine changes in the cortex and medulla. In addition, voxel-based analysis (VBA) was implemented to systematically identify local regions of injury over the whole kidney. DTI parameters were found to be significantly different in the medulla by both ROI analysis and VBA, which also spatially matched with collagen III immunohistochemistry (IHC). The DTI parameters in this medullary region exhibited moderate to strong correlations with histology, blood biomarkers, hydroxyproline, and gene expression. Our results thus highlight the sensitivity of DTI to the heterogeneity of renal fibrosis and importance of whole kidney noninvasive imaging.NEW & NOTEWORTHY Chronic kidney disease (CKD) can be characterized by inflammation and fibrosis of the kidney. Although standard of care methods have been limited in scope, safety, and spatial distribution, MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo. In this study, we performed DTI in an oxalate mouse model of CKD to systematically identify local kidney injury. DTI parameters strongly correlated with histology, blood biomarkers, hydroxyproline, and gene expression.


Subject(s)
Diffusion Tensor Imaging , Disease Models, Animal , Fibrosis , Mice, Inbred C57BL , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/diagnostic imaging , Male , Oxalates/metabolism , Kidney/pathology , Kidney/diagnostic imaging , Kidney/metabolism , Mice
6.
Immunity ; 42(5): 781-3, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25992851

ABSTRACT

Using new rapid, super-resolution imaging methods, Ritter et al. (2015) define the early events of immunological synapse formation and granule release.


Subject(s)
Actins/metabolism , Cytoplasmic Granules/metabolism , Immunological Synapses/metabolism , T-Lymphocytes, Cytotoxic/cytology , Humans
7.
J Am Soc Nephrol ; 32(11): 2697-2713, 2021 11.
Article in English | MEDLINE | ID: mdl-34716239

ABSTRACT

The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.


Subject(s)
Aging/physiology , Podocytes/cytology , Adult , Aged , Animals , Autophagy , Caloric Restriction , Cell Cycle , Cell Shape , Cells, Cultured , Cellular Senescence , DNA Damage , Female , Gene Expression , Humans , Inflammasomes , Kidney Glomerulus/cytology , Kidney Glomerulus/growth & development , Male , Mice , Middle Aged , Mitochondria/metabolism , Models, Animal , Oligopeptides/pharmacology , Oxidative Stress , Podocytes/metabolism , Rats , Regulated Cell Death , Sirtuins/metabolism , Species Specificity , Young Adult
8.
Nat Immunol ; 10(7): 734-43, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19503107

ABSTRACT

Macrophage colony-stimulating factor (M-CSF) influences the proliferation and survival of mononuclear phagocytes through the receptor CSF-1R. The adaptor protein DAP12 is critical for the function of mononuclear phagocytes. DAP12-mutant mice and humans have defects in osteoclasts and microglia, as well as brain and bone abnormalities. Here we show DAP12 deficiency impaired the M-CSF-induced proliferation and survival of macrophages in vitro. DAP12-deficient mice had fewer microglia in defined central nervous system areas, and DAP12-deficient progenitors regenerated myeloid cells inefficiently after bone marrow transplantation. Signaling by M-CSF through CSF-1R induced the stabilization and nuclear translocation of beta-catenin, which activated genes involved in the cell cycle. DAP12 was essential for phosphorylation and nuclear accumulation of beta-catenin. Our results provide a mechanistic explanation for the many defects of DAP12-deficient mononuclear phagocytes.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Proliferation/drug effects , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects , Signal Transduction/drug effects , beta Catenin/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Brain/metabolism , Brain/pathology , Calcium-Binding Proteins/metabolism , Cell Adhesion/drug effects , Cell Cycle/drug effects , Cell Survival/drug effects , Cells, Cultured , Flow Cytometry , Focal Adhesion Kinase 2/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunoblotting , Immunohistochemistry , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Mice, Transgenic , Microfilament Proteins , Phosphorylation
9.
Immunity ; 36(6): 899-901, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22749348

ABSTRACT

In this issue of Immunity, Kageyama et al. (2012), Zhao et al. (2012), and Dong et al. (2012) show that the adaptor protein SAP regulates both positive and negative signals through SLAM receptors to stabilize intercellular contacts.

10.
Immunity ; 36(1): 132-41, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22244846

ABSTRACT

The mechanisms by which cytotoxic T lymphocytes (CTLs) enter and are retained in nonlymphoid tissue are not well characterized. With a transgenic mouse expressing the NKG2D ligand retinoic acid early transcript 1ε (RAE1ε) in ß-islet cells of the pancreas, we found that RAE1 expression was sufficient to induce the recruitment of adoptively transferred CTLs to islets. This was dependent on NKG2D expression by the CTLs and independent of antigen recognition. Surprisingly, the recruitment of CTLs resulted in the subsequent recruitment of a large number of endogenous lymphocytes. Whereas transgenic mice did not develop diabetes, RAE1 expression was sufficient to induce insulitis in older, unmanipulated transgenic mice that was enhanced by viral infection and pancreatic inflammation. These results demonstrate that the expression of an NKG2D ligand in islets is sufficient to recruit CTLs regardless of their antigen specificity and to induce insulitis.


Subject(s)
Islets of Langerhans/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Cytotoxic/immunology , Tretinoin/metabolism , Animals , Cell Movement/immunology , Flow Cytometry , Ligands , Mice , Mice, Transgenic , NK Cell Lectin-Like Receptor Subfamily K/genetics
11.
J Am Soc Nephrol ; 31(10): 2341-2354, 2020 10.
Article in English | MEDLINE | ID: mdl-32651223

ABSTRACT

BACKGROUND: The glomerulus is a specialized capillary bed that is involved in urine production and BP control. Glomerular injury is a major cause of CKD, which is epidemic and without therapeutic options. Single-cell transcriptomics has radically improved our ability to characterize complex organs, such as the kidney. Cells of the glomerulus, however, have been largely underrepresented in previous single-cell kidney studies due to their paucity and intractability. METHODS: Single-cell RNA sequencing comprehensively characterized the types of cells in the glomerulus from healthy mice and from four different disease models (nephrotoxic serum nephritis, diabetes, doxorubicin toxicity, and CD2AP deficiency). RESULTS: All cell types in the glomerulus were identified using unsupervised clustering analysis. Novel marker genes and gene signatures of mesangial cells, vascular smooth muscle cells of the afferent and efferent arterioles, parietal epithelial cells, and three types of endothelial cells were identified. Analysis of the disease models revealed cell type-specific and injury type-specific responses in the glomerulus, including acute activation of the Hippo pathway in podocytes after nephrotoxic immune injury. Conditional deletion of YAP or TAZ resulted in more severe and prolonged proteinuria in response to injury, as well as worse glomerulosclerosis. CONCLUSIONS: Generation of comprehensive high-resolution, single-cell transcriptomic profiles of the glomerulus from healthy and injured mice provides resources to identify novel disease-related genes and pathways.


Subject(s)
Kidney Diseases/etiology , Kidney Glomerulus/pathology , Animals , Disease Models, Animal , Gene Expression Profiling , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Glomerulus/metabolism , Mesangial Cells/pathology , Mice , Mice, Inbred C57BL , Podocytes/pathology
12.
PLoS Pathog ; 14(5): e1007053, 2018 05.
Article in English | MEDLINE | ID: mdl-29734372

ABSTRACT

CD4 T cell-mediated help to CD8 T cells and B cells is a critical arm of the adaptive immune system required for control of pathogen infection. CD4 T cells express cytokines and co-stimulatory molecules that support a sustained CD8 T cell response and also enhance generation of protective antibody by germinal center B cells. However, the molecular components that modulate CD4 T cell functions in response to viral infection or vaccine are incompletely understood. Here we demonstrate that inactivation of the signaling adaptor CD2-associated protein (CD2AP) promotes CD4 T cell differentiation towards the follicular helper lineage, leading to enhanced control of viral infection by augmented germinal center response in chronic lymphocytic choriomeningitis virus (LCMV) infection. The enhanced follicular helper differentiation is associated with extended duration of TCR signaling and enhanced cytokine production of CD2AP-deficient CD4 T cells specifically under TH1 conditions, while neither prolonged TCR signaling nor enhanced follicular helper differentiation was observed under conditions that induce other helper effector subsets. Despite the structural similarity between CD2AP and the closely related adaptor protein CIN85, we observed defective antibody-mediated control of chronic LCMV infection in mice lacking CIN85 in T cells, suggesting non-overlapping and potentially antagonistic roles for CD2AP and CIN85. These results suggest that tuning of TCR signaling by targeting CD2AP improves protective antibody responses in viral infection.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cytoskeletal Proteins/metabolism , Lymphocytic choriomeningitis virus/immunology , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/physiology , Animals , Antibody Formation , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cytoskeletal Proteins/immunology , Cytoskeletal Proteins/physiology , Germinal Center/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/pathogenicity , Mice , Mice, Inbred C57BL , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/physiology
13.
Proc Natl Acad Sci U S A ; 114(23): E4621-E4630, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28536193

ABSTRACT

Podocytes form the outer part of the glomerular filter, where they have to withstand enormous transcapillary filtration forces driving glomerular filtration. Detachment of podocytes from the glomerular basement membrane precedes most glomerular diseases. However, little is known about the regulation of podocyte adhesion in vivo. Thus, we systematically screened for podocyte-specific focal adhesome (FA) components, using genetic reporter models in combination with iTRAQ-based mass spectrometry. This approach led to the identification of FERM domain protein EPB41L5 as a highly enriched podocyte-specific FA component in vivo. Genetic deletion of Epb41l5 resulted in severe proteinuria, detachment of podocytes, and development of focal segmental glomerulosclerosis. Remarkably, by binding and recruiting the RhoGEF ARGHEF18 to the leading edge, EPB41L5 directly controls actomyosin contractility and subsequent maturation of focal adhesions, cell spreading, and migration. Furthermore, EPB41L5 controls matrix-dependent outside-in signaling by regulating the focal adhesome composition. Thus, by linking extracellular matrix sensing and signaling, focal adhesion maturation, and actomyosin activation EPB41L5 ensures the mechanical stability required for podocytes at the kidney filtration barrier. Finally, a diminution of EPB41L5-dependent signaling programs appears to be a common theme of podocyte disease, and therefore offers unexpected interventional therapeutic strategies to prevent podocyte loss and kidney disease progression.


Subject(s)
Actomyosin/metabolism , Cytoskeletal Proteins/metabolism , Focal Adhesions/metabolism , Membrane Proteins/metabolism , Podocytes/metabolism , Animals , Cytoskeletal Proteins/deficiency , Cytoskeletal Proteins/genetics , Female , Focal Adhesions/pathology , Gene Knockout Techniques , Glomerulosclerosis, Focal Segmental/etiology , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Knockout , Nephrotic Syndrome/etiology , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/pathology , Podocytes/pathology , Pregnancy , Proteomics , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction
14.
J Am Soc Nephrol ; 29(1): 138-154, 2018 01.
Article in English | MEDLINE | ID: mdl-29217759

ABSTRACT

Dendritic cells (DCs) are thought to form a dendritic network across barrier surfaces and throughout organs, including the kidney, to perform an important sentinel function. However, previous studies of DC function used markers, such as CD11c or CX3CR1, that are not unique to DCs. Here, we evaluated the role of DCs in renal inflammation using a CD11c reporter mouse line and two mouse lines with DC-specific reporters, Zbtb46-GFP and Snx22-GFP. Multiphoton microscopy of kidney sections confirmed that most of the dendritically shaped CD11c+ cells forming a network throughout the renal interstitium expressed macrophage-specific markers. In contrast, DCs marked by Zbtb46-GFP or Snx22-GFP were less abundant, concentrated around blood vessels, and round in shape. We confirmed this pattern of localization using imaging mass cytometry. Motility measurements showed that resident macrophages were sessile, whereas DCs were motile before and after inflammation. Although uninflamed glomeruli rarely contained DCs, injury with nephrotoxic antibodies resulted in accumulation of ZBTB46 + cells in the periglomerular region. ZBTB46 identifies all classic DCs, which can be categorized into two functional subsets that express either CD103 or CD11b. Depletion of ZBTB46 + cells attenuated the antibody-induced kidney injury, whereas deficiency of the CD103+ subset accelerated injury through a mechanism that involved increased neutrophil infiltration. RNA sequencing 7 days after nephrotoxic antibody injection showed that CD11b+ DCs expressed the neutrophil-attracting cytokine CXCL2, whereas CD103+ DCs expressed high levels of several anti-inflammatory genes. These results provide new insights into the distinct functions of the two major DC subsets in glomerular inflammation.


Subject(s)
Dendritic Cells/physiology , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Animals , Antigens, CD/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , CD11 Antigens/genetics , CD11b Antigen/genetics , Cell Movement , Chemokine CXCL2/genetics , Dendritic Cells/metabolism , Dendritic Cells/pathology , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/metabolism , Integrin alpha Chains/metabolism , Macrophages , Male , Mice , Mice, Knockout , Neutrophils/pathology , Neutrophils/physiology , Repressor Proteins/genetics , Sequence Analysis, RNA , Sorting Nexins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
15.
J Immunol ; 196(4): 1471-9, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26746192

ABSTRACT

Proper T cell activation is promoted by sustained calcium signaling downstream of the TCR. However, the dynamics of calcium flux after stimulation with an APC in vivo remain to be fully understood. Previous studies focusing on T cell motility suggested that the activation of naive T cells in the lymph node occurs in distinct phases. In phase I, T cells make multiple transient contacts with dendritic cells before entering a phase II, where they exist in stable clusters with dendritic cells. It has been suggested that T cells signal during transient contacts of phase I, but this has never been shown directly. Because time-dependent loss of calcium dyes from cells hampers long-term imaging of cells in vivo after antigenic stimulation, we generated a knock-in mouse expressing a modified form of the Cameleon fluorescence resonance energy transfer reporter for intracellular calcium and examined calcium flux both in vitro and in situ. In vitro, we observed transient, oscillatory, and sustained calcium flux after contact with APC, but these behaviors were not affected by the type of APC or Ag quantity, but were, however, moderately dependent on Ag quality. In vivo, we found that during phase I, T cells exhibit weak calcium fluxes and detectable changes in cell motility. This demonstrates that naive T cells signal during phase I and support the hypothesis that accumulated calcium signals are required to signal the beginning of phase II.


Subject(s)
Calcium Signaling , Calcium/metabolism , Lymphocyte Activation , T-Lymphocytes/immunology , Animals , Antigens/immunology , Biosensing Techniques , Cell Movement , Dendritic Cells/immunology , Fluorescence Resonance Energy Transfer , Mice
16.
J Immunol ; 196(11): 4805-13, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27183590

ABSTRACT

It is now clear that recognition of nascent tumors by the immune system is critical for survival of the host against cancer. During cancer immunoediting, the ability of the tumor to escape immune recognition is important for tumor development. The immune system recognizes tumors via the presence of classical Ags and also by conserved innate mechanisms. One of these mechanisms is the NKG2D receptor that recognizes ligands whose expression is induced by cell transformation. In this study, we show that in NKG2D receptor-deficient mice, increasing numbers of B cells begin to express NKG2D ligands as they age. Their absence in wild-type mice suggests that these cells are normally cleared by NKG2D-expressing cells. NKG2D-deficient mice and mice constitutively expressing NKG2D ligands had increased incidence of B cell tumors, confirming that the inability to clear NKG2D ligand-expressing cells was important in tumor suppression and that NKG2D ligand expression is a marker of nascent tumors. Supporting a role for NKG2D ligand expression in controlling the progression of early-stage B cell lymphomas in humans, we found higher expression of a microRNA that inhibits human NKG2D ligand expression in tumor cells from high-grade compared with low-grade follicular lymphoma patients.


Subject(s)
Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Animals , Disease Progression , Humans , Ligands , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , MicroRNAs/genetics , NK Cell Lectin-Like Receptor Subfamily K/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily K/deficiency , NK Cell Lectin-Like Receptor Subfamily K/genetics
17.
Immunity ; 29(3): 414-22, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18760640

ABSTRACT

The role of the center of the immunological synapse (the central supramolecular activation cluster or cSMAC) is controversial. One model suggests that the role of the cSMAC depends on antigen quality and can both enhance signaling and receptor downregulation, whereas a second model proposes that the sole function of the cSMAC is to downregulate signaling. An important distinction between the models is whether signaling occurs in the cSMAC. Here, we demonstrate that at early time points, signaling occurs outside the cSMAC, but occurs in the cSMAC at later time points. Additionally, we show that cSMAC formation enhances the stimulatory potency of weak agonists for the TCR. Combined with previous studies showing that cSMAC formation decreases the signaling by strong agonists, our data support a model proposing that signaling and receptor degradation both occur in the cSMAC and that the balance between signaling and degradation in the synapse is determined by antigen quality.


Subject(s)
Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Intercellular Junctions/metabolism , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , ZAP-70 Protein-Tyrosine Kinase/metabolism , Animals , Antigen-Presenting Cells/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Down-Regulation , HeLa Cells , Humans , Mice , Mice, Transgenic , Peptides/metabolism , Phosphatidylinositols/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Receptors, Antigen, T-Cell/agonists , Transfection
18.
J Am Soc Nephrol ; 27(11): 3285-3290, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27036737

ABSTRACT

In glomerular disease, podocyte injury results in a dramatic change in cell morphology known as foot process effacement. Remodeling of the actin cytoskeleton through the activity of small GTPases was identified as a key mechanism in effacement, with increased membrane activity and motility in vitro However, whether podocytes are stationary or actively moving cells in vivo remains debated. Using intravital and kidney slice two-photon imaging of the three-dimensional structure of mouse podocytes, we found that uninjured podocytes remained nonmotile and maintained a canopy-shaped structure over time. On expression of constitutively active Rac1, however, podocytes changed shape by retracting processes and clearly exhibited domains of increased membrane activity. Constitutive activation of Rac1 also led to podocyte detachment from the glomerular basement membrane, and we detected detached podocytes crawling on the surface of the tubular epithelium and occasionally, in contact with peritubular capillaries. Podocyte membrane activity also increased in the inflammatory environment of immune complex-mediated GN. Our results provide evidence that podocytes transition from a static to a dynamic state in vivo, shedding new light on mechanisms in foot process effacement.


Subject(s)
Cell Membrane/physiology , Podocytes/physiology , Podocytes/ultrastructure , Animals , Intravital Microscopy , Kidney/cytology , Mice , Microscopy, Fluorescence, Multiphoton
19.
Biochim Biophys Acta ; 1854(10 Pt B): 1567-74, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25891902

ABSTRACT

Eukaryotic protein kinases have evolved to be highly regulated and dynamic molecular switches that are typically kept in an inactive state and then activated in response to extracellular signals. The hallmark signature of an active kinase is a hydrophobic spine called the regulatory (R) spine, which consists of four residues, two in the N-lobe and two in the C-lobe. RS1 is in the catalytic loop, RS2 is the Phe in the DFG motif, RS3 is at the C-terminus of the αC-Helix, and RS4 is at the beginning of ß4. Assembly of the R-spine is typically facilitated by phosphorylation of the Activation Loop. The assembled R-spine brings together all of the functional motifs that are essential for transferring the phosphate from ATP to a tethered protein substrate. This includes the G-Loop, which anchors the ATP, the catalytic loop, the DFG motif fused to the Activation Loop, and the αC-Helix. We focus here on the properties of the αC-Helix showing 1) how residues communicate with different parts of the molecule, 2) how it is recruited to the active site as a consequence of assembling of the R-spine, and 3) how it is regulated by linkers/motifs/proteins that lie outside the conserved kinase core. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.


Subject(s)
Protein Kinases/chemistry , Protein Structure, Secondary , Signal Transduction/genetics , Structure-Activity Relationship , Adenosine Triphosphate/chemistry , Amino Acid Motifs , Catalytic Domain , Eukaryota , Phosphorylation , Protein Kinases/metabolism
20.
Curr Opin Nephrol Hypertens ; 25(3): 159-67, 2016 May.
Article in English | MEDLINE | ID: mdl-27023834

ABSTRACT

PURPOSE OF REVIEW: Histologic and electron microscopic analysis of the kidney has provided tremendous insight into structures such as the glomerulus and nephron. Recent advances in imaging, such as deep volumetric approaches and superresolution microscopy, have the capacity to dramatically enhance our current understanding of the structure and function of the kidney. Volumetric imaging can generate images millimeters below the surface of the intact kidney. Superresolution microscopy breaks the diffraction barrier inherent in traditional light microscopy, enabling the visualization of fine structures. Here, we describe new approaches to deep volumetric and superresolution microscopy of the kidney. RECENT FINDINGS: Rapid advances in lasers, microscopic objectives, and tissue preparation have transformed our ability to deep volumetric image the kidney. Innovations in sample preparation have allowed for superresolution imaging with electron microscopy correlation, providing unprecedented insight into the structures within the glomerulus. SUMMARY: Technological advances in imaging have revolutionized our capacity to image both large volumes of tissue and the finest structural details of a cell. These new advances have the potential to provide additional profound observations into the normal and pathologic functions of the kidney.


Subject(s)
Diagnostic Imaging , Image Processing, Computer-Assisted , Kidney Diseases/diagnosis , Kidney Glomerulus/pathology , Kidney/pathology , Microscopy , Humans , Image Processing, Computer-Assisted/methods , Microscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL