Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Faraday Discuss ; 236(0): 71-85, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35506440

ABSTRACT

Atomic layer deposition (ALD) is one of the backbones for today's electronic device fabrication. A critical property of ALD is the layer-by-layer growth, which gives rise to the atomic-scale accuracy. However, the growth rate - or growth per cycle - can differ significantly depending on the type of system, molecules used, and several other experimental parameters. Typically, ALD growth rates are constant in subsequent ALD cycles, making ALD an outstanding deposition technique. However, contrary to this steady-state - when the ALD process can be entirely decoupled from the substrate on which the material is grown - the deposition's early stage does not appear to follow the same kinetics, chemistry, and growth rate. Instead, it is to a large extent determined by the surface composition of the substrate. Here, we present evidence of oxygen relocation from the substrate-based oxide, either the thermal or native oxide of InAs, to the overlayer of HfO2 in the initial ALD phase. This phenomenon enables control of the thickness of the initial ALD layer by controlling the surface conditions of the substrate prior to ALD. On the other hand, we observe a complete removal of the native oxide from InAs already during the first ALD half-cycle, even if the thickness of the oxide layer exceeds one monolayer, together with a self-limiting thickness of the ALD layer of a maximum of one monolayer of HfO2. These observations not only highlight several limitations of the widely used ligand exchange model, but they also give promise for a better control of the industrially important self-cleaning effect of III-V semiconductors, which is crucial for future generation high-speed MOS.

2.
Chemistry ; 25(59): 13591-13597, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31418957

ABSTRACT

A new generation of N-heterocyclic carbene palladium(II) complexes containing vinyl groups in different positions in the backbone of the N-heterocycle have been developed. The fully characterised monomers were copolymerised with divinylbenzene to fabricate robust polymer supported NHC-PdII complexes and these polymers were applied as heterogeneous catalysts in directed C-H halogenation of arenes with a pyridine-type directing group. The catalysts demonstrated medium-high catalytic activity with up to 90 % conversion and 100 % selectivity in chlorination. They are heterogeneous and recyclable (at least six times) with no significant leaching of palladium in batch mode catalysis. The best catalyst was also applied under continuous flow conditions where it disclosed an exceptional activity (90 % conversion) and 100 % selectivity for the mono-halogenated product for at least six days, with no leaching of palladium, no loss of activity and an ability to maintain the original oxidation state of PdII .

3.
Chemistry ; 23(35): 8457-8465, 2017 Jun 22.
Article in English | MEDLINE | ID: mdl-28422334

ABSTRACT

Heterogeneous catalysts for selective oxidation of C-H bonds were synthesized by co-polymerization of new N-heterocyclic carbene-palladium(II) (NHC-PdII ) monomers with divinylbenzene. The polymer-supported NHC-PdII -catalysed undirected C-H acetoxylation of simple and methylated arenes as well as polyarenes, with similar or superior efficiency compared to their homogeneous analogues. In particular, the regioselectivity has been improved in the acetoxylation of biphenyl and naphthalene compared to the best homogeneous catalysts. The new polymer-supported catalysts maintain the original oxidation state of PdII after repeated catalytic reactions, and exhibit no significant leaching of palladium. In addition, the new catalysts have been successfully recovered and reused without loss of activity over several cycles of reactions.

4.
Chem Mater ; 35(2): 529-538, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36711051

ABSTRACT

The surface chemistry of the initial growth during the first or first few precursor cycles in atomic layer deposition is decisive for how the growth proceeds later on and thus for the quality of the thin films grown. Yet, although general schemes of the surface chemistry of atomic layer deposition have been developed for many processes and precursors, in many cases, knowledge of this surface chemistry remains far from complete. For the particular case of HfO2 atomic layer deposition on a SiO2 surface from an alkylamido-hafnium precursor and water, we address this lack by carrying out an operando atomic layer deposition experiment during the first cycle of atomic layer deposition. Ambient-pressure X-ray photoelectron spectroscopy and density functional theory together show that the decomposition of the metal precursor on the stoichiometric SiO2 surface in the first half-cycle of atomic layer deposition proceeds via a bimolecular reaction mechanism. The reaction leads to the formation of Hf-bonded methyl methylene imine and free dimethylamine. In addition, ligand exchange takes place involving the surface hydroxyls adsorbed at defect sites of the SiO2 surface.

SELECTION OF CITATIONS
SEARCH DETAIL