Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Small ; 9(13): 2288-96, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23359538

ABSTRACT

Methods for the continuous monitoring and removal of ultra-trace levels of toxic inorganic species (e.g., mercury, copper, and cadmium ions) from aqueous media such as drinking water and biological fluids are essential. In this paper, the design and engineering of a simple, pH-dependent, micro-object optical sensor is described based on mesoporous aluminosilica pellets with an adsorbed dressing receptor (a porphyrinic chelating ligand). This tailor-made optical sensor permits ultra-fast (≤ 60 s), specific, pH-dependent visualization and removal of Cu(2+) , Cd(2+) , and Hg(2+) at sub-picomolar concentrations (∼10(-11) mol dm(-3) ) from aqueous media, including drinking water and a suspension of red blood cells. The acidic active acid sites of the pellets consist of heteroatoms arranged around uniformly shaped pores in 3D nanoscale gyroidal mesostructures densely coated with the chelating ligand. The sensor can be used in batch mode, as well as in a flow-through system in which sampling, target ion recognition and removal, and analysis are integrated in a highly automated and efficient manner. Because the pellets exhibit long-term stability, reproducibility, and versatility over a number of analysis/regeneration cycles, they can be expected to be useful for the fabrication of inexpensive sensor devices for naked-eye detection of toxic pollutants.


Subject(s)
Metals/isolation & purification , Optics and Photonics/instrumentation , Water Pollutants, Chemical/isolation & purification , Animals , Anions/isolation & purification , Cations/isolation & purification , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Porosity , Scattering, Small Angle , Spectrum Analysis , Temperature , X-Ray Diffraction
2.
Analyst ; 137(22): 5278-90, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23012687

ABSTRACT

Optical captor design is necessary for the controlled development of a technique for detecting and removing heavy and toxic metals from drinking water with high flexibility and low capital cost. We designed chemical mesocaptors for optical separation/extraction and monitoring/detection of Cu(II) and Zn(II) ions from water even at trace concentration levels without a preconcentration process. The mesoporous aluminosilica carriers with three-dimensional (3D) structures, high aluminum content, natural surfaces, and active acid sites strongly induced H-bonding and dispersive interactions with organic moieties, thereby leading to the formation of stable captors without chromophore leaching during the removal assays of Cu(II) and Zn(II) ions. Using such a tailored mesocaptor design, the direct immobilization of these hydrophobic ligands (4,5-diamino-6-hydroxy-2-mercaptopyrimidine and diphenylthiocarbazone) into ordered pore-based aluminasilica monoliths enabled the easy generation and transduction of optical colour signals as a response to metal-to-ligand binding events, even at ultra-trace concentrations (~10(-9) mol dm(-3)) of Cu(II) and Zn(II) ions in drinking water, without the need for sophisticated instruments. Theoretical models have been developed to provide insights into the effect of active site surfaces on the enhancement of the optical removal process in terms of long-term stability, reversibility, and selectivity, hence allowing us to understand the role of mesoscopic geometry and nanoscale pore orientation of mesocaptors better. Generally, this ion-capture model enables the development of a simple and effective technique for effective wastewater treatment and management.

3.
Chemosphere ; 270: 128668, 2021 May.
Article in English | MEDLINE | ID: mdl-33268087

ABSTRACT

Sustainable materials are urgently desired for treatment of radioactive cesium (Cs) contaminated water to safe-guard the public health. Apart from the synthetic ligand-based materials, the Mangrove charcoal modified adsorbent was fabricated for assessing of Cs removal from waste sample. The raw charcoal was oxidized using nitrification approach and diverse oxygen containing carboxyl, carbonyl and hydroxyl functional groups were introduced. After modification, the adsorbent characteristics were drastically changed as compared to the charcoal during the measurement of FTIR, N2 adsorption-desorption isotherms and SEM micrographs. The data clarified that charcoal modified adsorbent was exhibited high Cs transport through the inner surface of the adsorbent based on bonding ability. The adsorbent was shown comparatively slow kinetics to Cs ion; however, the adsorption capacity was high as 133.54 mg/g, which was higher than the crown ether based conjugate materials. The adsorption data were followed to the Langmuir adsorption isotherms and the monolayer coverage was possible due to the data presentation. The presence of high amount of Na and K were slightly interfered to the Cs adsorption by the charcoal modified adsorbent, however; the Na and K concentration was 350-600 folds higher than the Cs concentration. Then the proposed adsorbent was selective to Cs for the potential real radioactive Cs contaminated water. The volume reduction was established rather than desorption and reuses advantages. More than 99% volume reduction was measured by burning of Cs adsorbed adsorbent at 500 °C for ensuring the safe storage and disposal of used adsorbent. Therefore, the charcoal modified adsorbent may open the new door to treat the Cs containing wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Adsorption , Cesium/analysis , Charcoal , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/analysis , Wood/chemistry
4.
J Hazard Mater ; 406: 124314, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33168312

ABSTRACT

The monitoring and removal of abundant heavy metals such as Cu ions are considerable global concerns because of their severe impact on the health of humans and other living organisms. To meet this global challenge, we engineered a novel mesoscopic capture protocol for the highly selective removal and visual monitoring of copper (Cu2+) ions from wide-ranging water sources. The capture hierarchy carriers featured three-dimensional, microsized MgO mesoarchitecture rectangular sheet-like mosaics that were randomly built in horizontal and vertical directions, uniformly arranged sheet faces, corners, and edges, smoothly quadrilateral surface coverage for strong Cu2+-to-ligand binding exposure, and multidiffusible pathways. The Cu2+ ion-selectively active captor surface design was engineered through the simple incorporation/encapsulation of a synthetic molecular chelation agent into hierarchical mesoporous MgO rectangular sheet platforms to produce a selective, visual mesoscopic captor (VMC). The nanoscale VMC dressing of MgO rectangular mosaic hierarchy by molecularly electron-enriched chelates with actively double core bindings of azo- and sulfonamide- groups and hydrophobic dodecyl tail showed potential to selectively trap and efficiently remove ultratrace Cu2+-ions with an extreme removal capability of ~233 mg/g from watery solutions, such as drinking water, hospital effluent, and food-processing wastewater at specific pH values. In addition to the Cu2+ ion-selective removal, the VMC design enabled the continuous visual monitoring of ultratrace Cu2+ ions (~3.35 × 10-8 M) as a consequence of strong chelate-to-Cu2+ binding events among all accumulated matrices in water sources. Our experimental recycle protocol provided evidence of reusability and recyclability of VMC (≥10 cycles). With our mesoscopic capture protocol, the VMC can be a promising candidate for the selective decontamination/removal and sensitive detection of hazardous inorganic pollutants from different water sources with indoor or outdoor applications.


Subject(s)
Copper , Water Pollutants, Chemical , Adsorption , Humans , Hydrogen-Ion Concentration , Ions , Wastewater , Water Pollutants, Chemical/analysis
5.
Mater Today Bio ; 5: 100044, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32181446

ABSTRACT

Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce â€‹remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.

6.
Nanoscale Adv ; 2(8): 3525-3541, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-36134271

ABSTRACT

We report on the key influence of mesoscopic super-open-eye core-shell spheroids of TiO2- and LiFePO4-wrapped nanocarbon carved anode/cathode electrodes with uniform interior accommodation/storage pockets for the creation of fully reversible and dynamic Li-ion power battery (LIB) models. The mesoscopic core-shell anode/cathode electrodes provide potential half- and full-cell LIB-CR2032 configuration designs, and large-scale pouch models. In these variable mesoscopic LIB models, the broad-free-access and large-open-eye like gate-in-transport surfaces featured electrodes are key factors of built-in LIBs with excellent charge/discharge capacity, energy density performances, and outstanding cycling stability. Mesoscopic open-eye spheroid full-LIB-CR2032 configuration models retain 77.8% of the 1st cycle discharge specific capacity of 168.68 mA h g-1 after multiple cycling (i.e., 1st to 2000th cycles), efficient coulombic performance of approximately 99.6% at 0.1C, and high specific energy density battery of approximately 165.66 W h kg-1 at 0.1C. Furthermore, we have built a dynamic, super-open-mesoeye pouch LIB model using dense packing sets that are technically significant to meet the tradeoff requirements and long-term driving range of electric vehicles (EVs). The full-pouch package LIB models retain a powerful gate-in-transport system for heavy loaded electron/Li+ ion storage, diffusion, and truck movement through open-ended out/in and then up/downward eye circular/curvy folds, thereby leading to substantial durability, and remarkable electrochemical performances even after long-life charge/discharge cycling.

7.
Sci Rep ; 9(1): 14701, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31605015

ABSTRACT

Modulation of lithium-ion battery (LIB) anodes/cathodes with three-dimensional (3D) topographical hierarchy ridges, surface interfaces, and vortices promotes the power tendency of LIBs in terms of high-energy density and power density. Large-scale meso-geodesics offer a diverse range of spatial LIB models along the geodetically shaped downward/upward curvature, leading to open-ended movement gate options, and diffusible space orientations. Along with the primary 3D super-scalable hierarchy, the formation of structural features of building block egress/ingress, curvature cargo-like sphere vehicles, irregularly located serrated cuticles with abundant V-undulated rigidness, feathery tube pipe conifers, and a band of dagger-shaped needle sticks on anode/cathode electrode surfaces provides high performance LIB modules. The geodetically-shaped anode/cathode design enables the uniqueness of all LIB module configurations in terms of powerful lithium ion (Li+) movement revolving in out-/in- and up-/downward diffusion regimes and in hovering electron density for high-speed discharge rates. The stability of built-in anode//cathode full-scale LIB-model meso-geodesics affords an outstanding long-term cycling performance. The full-cell LIB meso-geodesics offered 91.5% retention of the first discharge capacity of 165.8 mAhg-1 after 2000 cycles, Coulombic efficiency of ~99.6% at the rate of 1 C and room temperature, and high specific energy density of ≈119 Wh kg-1. This LIB meso-geodesic module configuration may align perfectly with the requirements of the energy density limit mandatory for long-term EV driving range and the scale-up commercial manufactures.

8.
Nanomicro Lett ; 11(1): 84, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-34138059

ABSTRACT

To control the power hierarchy design of lithium-ion battery (LIB) built-up sets for electric vehicles (EVs), we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulated in full-scale LIB built-up models. As primary structural tectonics, heterogeneous composite superstructures of full-cell-LIB (anode//cathode) electrodes were designed in closely packed flower agave rosettes TiO2@C (FRTO@C anode) and vertical-star-tower LiFePO4@C (VST@C cathode) building blocks to regulate the electron/ion movement in the three-dimensional axes and orientation pathways. The superpower hierarchy surfaces and multi-directional orientation components may create isosurface potential electrodes with mobile electron movements, in-to-out interplay electron dominances, and electron/charge cloud distributions. This study is the first to evaluate the hotkeys of choice anode/cathode architectonics to assemble different LIB-electrode platforms with high-mobility electron/ion flows and high-performance capacity functionalities. Density functional theory calculation revealed that the FRTO@C anode and VST-(i)@C cathode architectonics are a superior choice for the configuration of full-scale LIB built-up models. The integrated FRTO@C//VST-(i)@C full-scale LIB retains a huge discharge capacity (~ 94.2%), an average Coulombic efficiency of 99.85% after 2000 cycles at 1 C, and a high energy density of 127 Wh kg-1, thereby satisfying scale-up commercial EV requirements.

9.
Sci Rep ; 8(1): 3740, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29487302

ABSTRACT

We provide strong evidence of the effectiveness of homogenously self-propelled particle-in-particle diffusion, interaction and growth protocol. This technique was used for one-pot synthesis of novel nitrogen-graphene oxide (N-GO)/Co3O4 nanocrystals with cuboid rectangular prism-shaped nanorods (NRs) along {110}-plane and truncated polyhedrons with densely-exposed, multi-facet sites along {311} and {111} planes. These hierarchal nanocrystals create electrode catalyst patterns with vast-range accessibility to active Co2+ sites, a vascular system for the transport and retention of captured O2 molecule interiorly, and low adsorption energy and dense electron configuration surfaces during the oxygen reduction reaction (ORR). The superior electrocatalytic ORR activity of the N-GO/Co3O4 polyhedron nanocrystals in terms of electrochemical selectivity, durability and stability compared with NRs or commercial Pt/C catalysts confirms the synergetic contribution of multi-functional, dense-exposed, and actively topographic facets of polyhedrons to significantly activate the catalytic nature of the catalyst. Our findings show real evidence, for the first time that not only the large number of catalytically active Co2+ cations at the top surface layer but also the dense location of active Co2+ sites on the upper-zone top-on-plane exposure, and the electron density configuration and distribution around the Co2+ sites were important for effective ORR.

10.
Colloids Surf B Biointerfaces ; 103: 288-97, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23202243

ABSTRACT

With the remarkable progress in the field of gene technology, proteins have gained an important function in the field of disease diagnosis and treatment. Protein bioadsorption has drawn increasing attention partly because of the promising advances for diagnostic assays, sensors, separations, and gene technology. Mesocage alumina has a cage-type structure with high surface area and pore volume, exhibiting superior capabilities for protein adsorption. In this study, we report the size-selective adsorption/removal of virtual proteins having different shapes, sizes, functions, and properties, including insulin, HopPmaL domain, lysozyme, galectin-3, ß-lactoglobulin, α-1-antitrypsin, α-amylase, and myosin in aqueous water using mesocage alumina. The mesoporous alumina monoliths have unique morphology and physical properties and enhanced protein adsorption characteristics in terms of sample loading capacity and quantity, thereby ensuring a higher concentration of proteins, interior pore diffusivity, and encapsulation in a short period. Thermodynamic analysis shows that protein adsorption on mesocage alumina monoliths is favorable and spontaneous. Theoretical models have been studied to investigate the major driving forces to achieve the most optimal performance of protein adsorption. The development of ultra- or micrometer-scale morphology composed of mesocage-shaped mesoporous monoliths or alumina network clusters can be effectively used to encapsulate the macromolecules into the interior cage cavities, which can greatly assist in other potentials for biomedical applications. Furthermore, the adsorption of a single protein from mixtures based on size- and shape-selective separation can open up new ways to produce micro-objects that suit a given protein encapsulation design.


Subject(s)
Aluminum Oxide/chemistry , Proteins/metabolism , Adsorption , Animals , Diffusion , Humans , Kinetics , Microscopy, Electron, Transmission , Models, Molecular , Porosity , Recycling , Scattering, Small Angle , Thermodynamics , Time Factors , X-Ray Diffraction
11.
J Hazard Mater ; 260: 833-43, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23856314

ABSTRACT

Here, we designed novel optical sensor based on the wormhole hexagonal mesoporous core/multi-shell silica nanoparticles that enabled the selective recognition and removal of these extremely toxic metals from drinking water. The surface-coating process of a mesoporous core/double-shell silica platforms by several consequence decorations using a cationic surfactant with double alkyl tails (CS-DAT) and then a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (III) signaling probe enabled us to create a unique hierarchical multi-shell sensor. In this design, the high loading capacity and wrapping of the CS-DAT and III organic moieties could be achieved, leading to the formation of silica core with multi-shells that formed from double-silica, CS-DAT, and III dressing layers. In this sensing system, notable changes in color and reflectance intensity of the multi-shelled sensor for Cu(2+), Co(2+), Cd(2+), and Hg(2+) ions, were observed at pH 2, 8, 9.5 and 11.5, respectively. The multi-shelled sensor is added to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, selectivity, and signal stability.


Subject(s)
Ions/analysis , Metals/analysis , Optical Devices , Water Pollutants, Chemical/analysis , Water Purification/methods , Cadmium/chemistry , Cobalt/chemistry , Copper/chemistry , Drinking Water , Hydrogen-Ion Concentration , Kinetics , Mercury/chemistry , Nanoparticles/chemistry , Optics and Photonics , Reproducibility of Results , Silicon Dioxide/chemistry , Surface Properties , Temperature , Water Pollutants, Chemical/chemistry , Water Supply
12.
Environ Sci Pollut Res Int ; 20(1): 421-30, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22562349

ABSTRACT

Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.


Subject(s)
Arsenic/analysis , Ion Exchange Resins/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Anions , Arsenic/chemistry , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/chemistry
13.
Environ Sci Pollut Res Int ; 20(6): 3863-76, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23179217

ABSTRACT

In the present study, ordered mesocage hexagonal P6mm and cubic Pm3n aluminosilica nanoadsorbents with monolith-like morphology and micro-, meso-, and macro-pores were fabricated using a simple, reproducible, direct synthesis. Our results suggest that the aluminosilica nanoadsorbents attained the ordering and uniform hexagonal and cubic pores even at the high Si/Al ratio of 4. The acidity of nanoadsorbents significantly based on the amount of aluminum species in the walls of the silica pore framework. Aluminosilica nanoadsorbents were used as a removal of environmentally toxic aromatic amines, namely p-nitroaniline (p-NA), from wastewater. The loading amount of Bronsted acid sites, mesostructural geometries, and multi-directional pores (3D) of the aluminosilica adsorbents played a key factor in the enhancement of the coverage adsorbent surfaces and intraparticle diffusion of adsorbate molecules onto the network surfaces and into the pore architectures of monoliths. Significantly, we developed theoretical models to explain the 3D microscopic geometry and the pore orientation of aluminosilica monoliths. A key component of the nanoadsorbents is the ability to create revisable p-NA adsorption systems with multiple reuse cycles. However, simple treatment using an acidic aqueous solution was found to remove effectively the p-NA and to form "p-NA-free" pore surfaces without any mesostructural damage.


Subject(s)
Aluminum Silicates/chemistry , Aniline Compounds/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water/analysis , Adsorption , Kinetics , Models, Theoretical , Nanostructures/chemistry , Thermodynamics
14.
Water Res ; 46(17): 5541-5550, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22901303

ABSTRACT

This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h(-1)) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health.


Subject(s)
Arsenic/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Arsenic/isolation & purification , Water Pollutants, Chemical/isolation & purification
15.
Anal Chim Acta ; 694(1-2): 151-61, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21565316

ABSTRACT

In order to control the design functionality of mesocylinder filters for molecular sieving of proteins, we fabricated tight mesocylinder silica nanotube (NT) arrays as promising filter candidates for size-exclusion separation of high-concentration macromolecules, such as insulin (INS), α-amylase (AMY), ß-lactoglobulin (ß-LG), and myosin (MYO) proteins. In this study, hexagonal mesocylinder structures were fabricated successfully inside anodic alumina membrane (AAM) nanochannels using a variety of cationic and nonionic surfactants as templates. The systematic design of the nanofilters was based on densely patterned polar silane coupling agents ("linkers") onto the AAM nanochannels, leading to the fabrication of mesocylinder silica arrays with vertical alignment and open surfaces of top-bottom ends inside AAM. Further surface coating of silica NTs hybrid AAM with hydrophobic agents facilitated the production of extremely robust constructed sequences of membranes without the formation of air gaps among NT arrays. The fabricated membranes with impermeable coated layers, robust surfaces, and uniformly multidirectional cylinder pores in nanoscale sizes rapidly separate large quantities of proteins within seconds. Meanwhile, comprehensive factors that affect the performance of the molecular transport, diffusivity, and filtration rate through nanofilter membranes were discussed. The mesocylinder filters of macromolecules show promise for the efficient separation and molecular transport of large molecular weight and size as well as concentrations of proteins.


Subject(s)
Filtration/methods , Proteins/isolation & purification , Silicon Dioxide/chemistry , Aluminum Oxide/chemistry , Insulin/isolation & purification , Lactoglobulins/isolation & purification , Myosins/isolation & purification , Nanotubes/chemistry , Particle Size , Surface-Active Agents/chemistry , alpha-Amylases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL