Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Infect Drug Resist ; 17: 2541-2554, 2024.
Article in English | MEDLINE | ID: mdl-38933778

ABSTRACT

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a great threat to public health worldwide. Ceftazidime-avibactam (CZA) is an effective ß-lactam/ß-lactamase inhibitors against CRKP. However, reports of resistance to CZA, mainly caused by Klebsiella pneumoniae carbapenemase (KPC) variants, have increased in recent years. In this study, we aimed to describe the resistance characteristics of KPC-12, a novel KPC variant identified from a CZA resistant K. pneumoniae. Methods: The K. pneumoniae YFKP-97 collected from a patient with respiratory tract infection was performed whole-genome sequencing (WGS) on the Illumina NovaSeq 6000 platform. Genomic characteristics were analyzed using bioinformatics methods. Antimicrobial susceptibility testing was conducted by the broth microdilution method. Induction of resistant strain was carried out in vitro as previously described. The G. mellonella killing assay was used to evaluate the pathogenicity of strains, and the conjugation experiment was performed to evaluate plasmid transfer ability. Results: Strain YFKP-97 was a multidrug-resistant clinical ST11-KL47 K. pneumoniae confers high-level resistance to CZA (16/4 µg/mL). WGS revealed that a KPC variant, KPC-12, was carried by the IncFII (pHN7A8) plasmids (pYFKP-97_a and pYFKP-97_b) and showed significantly decreased activity against carbapenems. In addition, there was a dose-dependent effect of bla KPC-12 on its activity against ceftazidime. In vitro inducible resistance assay results demonstrated that the KPC-12 variant was more likely to confer resistance to CZA than the KPC-2 and KPC-3 variants. Discussion: Our study revealed that patients who was not treated with CZA are also possible to be infected with CZA-resistant strains harbored a novel KPC variant. Given that the transformant carrying bla KPC-12 was more likely to exhibit a CZA-resistance phenotype. Therefore, it is important to accurately identify the KPC variants as early as possible.

2.
mSphere ; 9(1): e0056423, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38170984

ABSTRACT

The emergence of antibiotic-resistant and biofilm-producing Staphylococcus aureus isolates presents major challenges for treating staphylococcal infections. Biofilm inhibition is an important anti-virulence strategy. In this study, a novel maleimide-diselenide hybrid compound (YH7) was synthesized and demonstrated remarkable antimicrobial activity against methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) in both planktonic cultures and biofilms. The minimum inhibitory concentration (MIC) of YH7 for S. aureus isolates was 16 µg/mL. Quantification of biofilms demonstrated that the sub-MIC (4 µg/mL) of YH7 significantly inhibits biofilm formation in both MSSA and MRSA. Confocal laser scanning microscopy analysis further confirmed the biofilm inhibitory potential of YH7. YH7 also significantly suppressed bacterial adherence to A549 cells. Moreover, YH7 treatment significantly inhibited S. aureus colonization in nasal tissue of mice. Preliminary mechanistic studies revealed that YH7 exerted potent biofilm-suppressing effects by inhibiting polysaccharide intercellular adhesin (PIA) synthesis, rather than suppressing bacterial autolysis. Real-time quantitative PCR data indicated that YH7 downregulated biofilm formation-related genes (clfA, fnbA, icaA, and icaD) and the global regulatory gene sarX, which promotes PIA synthesis. The sarX-dependent antibiofilm potential of YH7 was validated by constructing S. aureus NCTC8325 sarX knockout and complementation strains. Importantly, YH7 demonstrated a low potential to induce drug resistance in S. aureus and exhibited non-toxic to rabbit erythrocytes, A549, and BEAS-2B cells at antibacterial concentrations. In vivo toxicity assays conducted on Galleria mellonella further confirmed that YH7 is biocompatible. Overall, YH7 demonstrated potent antibiofilm activity supports its potential as an antimicrobial agent against S. aureus biofilm-related infections. IMPORTANCE Biofilm-associated infections, characterized by antibiotic resistance and persistence, present a formidable challenge in healthcare. Traditional antibacterial agents prove inadequate against biofilms. In this study, the novel compound YH7 demonstrates potent antibiofilm properties by impeding the adhesion and the polysaccharide intercellular adhesin production of Staphylococcus aureus. Notably, its exceptional efficacy against both methicillin-resistant and methicillin-susceptible strains highlights its broad applicability. This study highlights the potential of YH7 as a novel therapeutic agent to address the pressing issue of biofilm-driven infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Mice , Rabbits , Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Biofilms
3.
Emerg Microbes Infect ; 12(1): 2165969, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36628606

ABSTRACT

Previous studies have shown that the increased prevalent ST764 clone in China, Japan, and other Asian areas. However, the knowledge of the genetic features and virulence characteristics of methicillin-resistant Staphylococcus aureus (MRSA) ST764 in China is still limited. In this study, we identified 52 ST764-SCCmec type II isolates collected from five cities in China between 2014 and 2021. Whole genome sequencing showed that the most common staphylococcal protein A (spa) types of ST764 in China were t002 (55.78%) and t1084 (40.38%). Virulence assays showed that ST764-t1084 isolates had high haemolytic activity and α-toxin levels. Of the critical regulatory factors affecting α-toxin production, only the SaeRS was highly expressed in ST764-t1084 isolates. Mouse abscess model indicated that the virulence of ST764-t1084 isolates was comparable to that of S. aureus USA300-LAC famous for its hypervirulence. Interestingly, ST764-t002 isolates exhibited stronger biofilm formation and cell adhesion capacities than ST764-t1084 isolates. This seems to explain why ST764-t002 subclone has become more prevalent in China in recent years. Phylogenetic analysis suggested that all ST764 isolates from China in Clade III were closely related to KUN1163 (an isolate from Japan). Notably, genomic analysis revealed that the 52 ST764 isolates did not carry arginine catabolic mobile element (ACME), which differed from ST764 isolates in Japan. Additionally, most ST764 isolates (69.23%) harboured an obvious deletion of approximately 5 kb in the SCCmec II cassette region compared to KUN1163. Our findings shed light on the potential global transmission and genotypic as well as phenotypic characteristics of ST764 lineage.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Mice , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Bacterial Agents , Phylogeny , Staphylococcal Infections/epidemiology , Staphylococcus aureus , Virulence , Genotype , Virulence Factors/genetics
4.
Microbiol Spectr ; 11(3): e0004523, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37166296

ABSTRACT

Staphylococcus aureus is an important human pathogen and brings about many community-acquired, hospital-acquired, and biofilm-associated infections worldwide. It tends to form biofilms, triggering the release of toxins and initiating resistance mechanisms. As a result of the development of S. aureus tolerance to antibiotics, there are few drugs can availably control biofilm-associated infections. In this study, we synthesized a novel small-molecule compound CY-158-11 (C22H14Cl2NO2Se2) and proved its inhibitory effect on the biofilm formation of S. aureus at a subinhibitory concentration (1/8 MIC). The subinhibitory concentration of CY-158-11 not only did not affect the growth of bacteria but also had no toxicity to A549 cells or G. mellonella. Total biofilm biomass was investigated by crystal violet staining, and the results were confirmed by SYTO 9 and PI staining through confocal laser scanning microscopy. Moreover, CY-158-11 effectively prevented initial attachment and repressed the production of PIA instead of autolysis. RT-qPCR analysis also exhibited significant suppression of the genes involved in biofilm formation. Taken together, CY-158-11 exerted its inhibitory effects against the biofilm formation in S. aureus by inhibiting cell adhesion and the expression of icaA related to PIA production. IMPORTANCE Most bacteria exist in the form of biofilms, often strongly adherent to various surfaces, causing bacterial resistance and chronic infections. In general, antibacterial drugs are not effective against biofilms. The small-molecule compound CY-158-11 inhibited the biofilm formation of S. aureus at a subinhibitory concentration. By hindering adhesion and PIA-mediated biofilm formation, CY-158-11 exhibits antibiofilm activity toward S. aureus. These findings point to a novel therapeutic agent for combating intractable S. aureus-biofilm-related infections.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Biofilms , Staphylococcal Infections/drug therapy , Gentian Violet/pharmacology , Microbial Sensitivity Tests
5.
Microbiol Spectr ; 11(6): e0159623, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37819121

ABSTRACT

IMPORTANCE: Biofilms are an important virulence factor in Staphylococcus aureus and are characterized by a structured microbial community consisting of bacterial cells and a secreted extracellular polymeric matrix. Inhibition of biofilm formation is an effective measure to control S. aureus infection. Here, we have synthesized a small molecule compound S-342-3, which exhibits potent inhibition of biofilm formation in both MRSA and MSSA. Further investigations revealed that S-342-3 exerts inhibitory effects on biofilm formation by reducing the production of polysaccharide intercellular adhesin and preventing bacterial adhesion. Our study has confirmed that the inhibitory effect of S-342-3 on biofilm is achieved by downregulating the expression of genes responsible for biofilm formation. In addition, S-342-3 is non-toxic to Galleria mellonella larvae and A549 cells. Consequently, this study demonstrates the efficacy of a biologically safe compound S-342-3 in inhibiting biofilm formation in S. aureus, thereby providing a promising antibiofilm agent for further research.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Biofilms , Bacterial Adhesion , Methicillin-Resistant Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Microbial Sensitivity Tests
6.
Front Immunol ; 12: 722807, 2021.
Article in English | MEDLINE | ID: mdl-34646265

ABSTRACT

Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) is related to a variety of human diseases. However, its function in Colorectal cancer (CRC) remains uncertain. PLOD3 expression was analyzed using The Cancer Genome Atlas (TCGA) pan-cancer data. DAVID was used for enrichment analysis of PLOD3-related genes. The correlation between PLOD3 expression and immune cell infiltration was evaluated. Four expression profile datasets (GSE17536, GSE39582, GSE74602, and GSE113513) from Gene Expression Omnibus, and two proteomic datasets were used as validation cohorts for assessing the diagnostic and prognostic value of PLOD3 in CRC. What's more, we performed immunohistochemistry (IHC) staining for PLOD3 in 160 paired CRC specimens and corresponding adjacent non-tumor tissues. PLOD3 was highly expressed in many tumors including CRC. PLOD3 was upregulated in advanced stage CRCs, and high PLOD3 expression was associated with poor survival. High PLOD3 expression was associated with low levels of B cells, CD4+ T cells, M1 macrophages, CD8+ T cells, and multiple immunerelated characteristics. In addition, the high PLOD3 expression group had a higher TIDE score and a lower tumor mutation burden and microsatellite instability, indicating that patients with high PLOD3 expression may be resistant to immunotherapy. Additional datasets and IHC analysis were used to validate the diagnostic and prognostic value of PLOD3 at the mRNA and protein levels in CRC. Patients with non-response to immunotherapy showed increased PLOD3 expression in an immunotherapy treated dataset. PLOD3 is a potential biomarker for CRC diagnosis and prognosis prediction. CRCs with high PLOD3 expression may be resistant to immune checkpoint therapy.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , CD8-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/pathology , Databases, Factual , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy , Microsatellite Instability , Mutation , Prognosis , Proteomics , Tumor Burden , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL