Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
Cell ; 184(2): 521-533.e14, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33373587

ABSTRACT

Development of γ-secretase inhibitors (GSIs) and modulators (GSMs) represents an attractive therapeutic opportunity for Alzheimer's disease (AD) and cancers. However, how these GSIs and GSMs target γ-secretase has remained largely unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human γ-secretase bound individually to two GSI clinical candidates, Semagacestat and Avagacestat, a transition state analog GSI L685,458, and a classic GSM E2012, at overall resolutions of 2.6-3.1 Å. Remarkably, each of the GSIs occupies the same general location on presenilin 1 (PS1) that accommodates the ß strand from amyloid precursor protein or Notch, interfering with substrate recruitment. L685,458 directly coordinates the two catalytic aspartate residues of PS1. E2012 binds to an allosteric site of γ-secretase on the extracellular side, potentially explaining its modulating activity. Structural analysis reveals a set of shared themes and variations for inhibitor and modulator recognition that will guide development of the next-generation substrate-selective inhibitors.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pharmaceutical Preparations/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Amino Acid Sequence , Amyloid Precursor Protein Secretases/ultrastructure , Azepines/pharmacology , Binding Sites , Cryoelectron Microscopy , HEK293 Cells , Humans , Models, Biological , Models, Molecular , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Presenilin-1/chemistry , Presenilin-1/metabolism , Protein Binding/drug effects , Protein Conformation , Structure-Activity Relationship , Substrate Specificity/drug effects , Sulfonamides/chemistry , Sulfonamides/pharmacology
2.
Annu Rev Biochem ; 89: 333-358, 2020 06 20.
Article in English | MEDLINE | ID: mdl-31815536

ABSTRACT

Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.


Subject(s)
RNA Splicing Factors/genetics , RNA Splicing , RNA-Binding Proteins/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoprotein, U5 Small Nuclear/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Spliceosomes/metabolism , Catalytic Domain , Conserved Sequence , Exons , Humans , Introns , Models, Molecular , Nucleic Acid Conformation , Protein Structure, Secondary , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing Factors/chemistry , RNA Splicing Factors/metabolism , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/chemistry , Ribonucleoprotein, U5 Small Nuclear/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Spliceosomes/genetics , Spliceosomes/ultrastructure
3.
Cell ; 183(3): 730-738.e13, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32979942

ABSTRACT

SARS-CoV-2 is an enveloped virus responsible for the COVID-19 pandemic. Despite recent advances in the structural elucidation of SARS-CoV-2 proteins, the detailed architecture of the intact virus remains to be unveiled. Here we report the molecular assembly of the authentic SARS-CoV-2 virus using cryoelectron tomography (cryo-ET) and subtomogram averaging (STA). Native structures of the S proteins in pre- and postfusion conformations were determined to average resolutions of 8.7-11 Å. Compositions of the N-linked glycans from the native spikes were analyzed by mass spectrometry, which revealed overall processing states of the native glycans highly similar to that of the recombinant glycoprotein glycans. The native conformation of the ribonucleoproteins (RNPs) and their higher-order assemblies were revealed. Overall, these characterizations revealed the architecture of the SARS-CoV-2 virus in exceptional detail and shed light on how the virus packs its ∼30-kb-long single-segmented RNA in the ∼80-nm-diameter lumen.


Subject(s)
Betacoronavirus/physiology , Betacoronavirus/ultrastructure , Virus Assembly , Animals , Chlorocebus aethiops , Cryoelectron Microscopy , Humans , Mass Spectrometry , Models, Molecular , Protein Conformation , SARS-CoV-2 , Vero Cells , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Virus Cultivation
4.
Cell ; 177(2): 339-351.e13, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30879786

ABSTRACT

Pre-mRNA splicing is executed by the spliceosome. Structural characterization of the catalytically activated complex (B∗) is pivotal for understanding the branching reaction. In this study, we assembled the B∗ complexes on two different pre-mRNAs from Saccharomyces cerevisiae and determined the cryo-EM structures of four distinct B∗ complexes at overall resolutions of 2.9-3.8 Å. The duplex between U2 small nuclear RNA (snRNA) and the branch point sequence (BPS) is discretely away from the 5'-splice site (5'SS) in the three B∗ complexes that are devoid of the step I splicing factors Yju2 and Cwc25. Recruitment of Yju2 into the active site brings the U2/BPS duplex into the vicinity of 5'SS, with the BPS nucleophile positioned 4 Å away from the catalytic metal M2. This analysis reveals the functional mechanism of Yju2 and Cwc25 in branching. These structures on different pre-mRNAs reveal substrate-specific conformations of the spliceosome in a major functional state.


Subject(s)
Spliceosomes/physiology , Spliceosomes/ultrastructure , Catalytic Domain/physiology , Cryoelectron Microscopy/methods , Exons , Introns , Nuclear Proteins/metabolism , RNA Precursors/metabolism , RNA Splice Sites/genetics , RNA Splicing/physiology , RNA Splicing Factors/metabolism , RNA, Small Nuclear/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spliceosomes/metabolism
5.
Immunity ; 57(6): 1177-1181, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38865960

ABSTRACT

AI is rapidly becoming part of many aspects of daily life, with an impact that reaches all fields of research. We asked investigators to share their thoughts on how AI is changing immunology research, what is necessary to move forward, the potential and the pitfalls, and what will remain unchanged as the field journeys into a new era.


Subject(s)
Allergy and Immunology , Artificial Intelligence , Humans , Animals
6.
Cell ; 171(1): 120-132.e12, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28919079

ABSTRACT

The disassembly of the intron lariat spliceosome (ILS) marks the end of a splicing cycle. Here we report a cryoelectron microscopy structure of the ILS complex from Saccharomyces cerevisiae at an average resolution of 3.5 Å. The intron lariat remains bound in the spliceosome whereas the ligated exon is already dissociated. The step II splicing factors Prp17 and Prp18, along with Cwc21 and Cwc22 that stabilize the 5' exon binding to loop I of U5 small nuclear RNA (snRNA), have been released from the active site assembly. The DEAH family ATPase/helicase Prp43 binds Syf1 at the periphery of the spliceosome, with its RNA-binding site close to the 3' end of U6 snRNA. The C-terminal domain of Ntr1/Spp382 associates with the GTPase Snu114, and Ntr2 is anchored to Prp8 while interacting with the superhelical domain of Ntr1. These structural features suggest a plausible mechanism for the disassembly of the ILS complex.


Subject(s)
Introns , Spliceosomes/ultrastructure , Cryoelectron Microscopy , DEAD-box RNA Helicases/chemistry , Models, Molecular , RNA Precursors/chemistry , RNA Precursors/ultrastructure , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/ultrastructure , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Schizosaccharomyces/chemistry , Spliceosomes/chemistry
7.
Cell ; 171(7): 1589-1598.e8, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29153833

ABSTRACT

Removal of an intron from a pre-mRNA by the spliceosome results in the ligation of two exons in the post-catalytic spliceosome (known as the P complex). Here, we present a cryo-EM structure of the P complex from Saccharomyces cerevisiae at an average resolution of 3.6 Å. The ligated exon is held in the active site through RNA-RNA contacts. Three bases at the 3' end of the 5' exon remain anchored to loop I of U5 small nuclear RNA, and the conserved AG nucleotides of the 3'-splice site (3'SS) are specifically recognized by the invariant adenine of the branch point sequence, the guanine base at the 5' end of the 5'SS, and an adenine base of U6 snRNA. The 3'SS is stabilized through an interaction with the 1585-loop of Prp8. The P complex structure provides a view on splice junction formation critical for understanding the complete splicing cycle.


Subject(s)
Saccharomyces cerevisiae/chemistry , Spliceosomes/chemistry , Cryoelectron Microscopy , Humans , Models, Molecular , RNA Splicing , Saccharomyces cerevisiae/metabolism , Spliceosomes/metabolism
8.
Cell ; 169(5): 918-929.e14, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28502770

ABSTRACT

Mechanistic understanding of pre-mRNA splicing requires detailed structural information on various states of the spliceosome. Here we report the cryo electron microscopy (cryo-EM) structure of the human spliceosome just before exon ligation (the C∗ complex) at an average resolution of 3.76 Å. The splicing factor Prp17 stabilizes the active site conformation. The step II factor Slu7 adopts an extended conformation, binds Prp8 and Cwc22, and is poised for selection of the 3'-splice site. Remarkably, the intron lariat traverses through a positively charged central channel of RBM22; this unusual organization suggests mechanisms of intron recruitment, confinement, and release. The protein PRKRIP1 forms a 100-Å α helix linking the distant U2 snRNP to the catalytic center. A 35-residue fragment of the ATPase/helicase Prp22 latches onto Prp8, and the quaternary exon junction complex (EJC) recognizes upstream 5'-exon sequences and associates with Cwc22 and the GTPase Snu114. These structural features reveal important mechanistic insights into exon ligation.


Subject(s)
RNA Precursors/metabolism , Spliceosomes/chemistry , Spliceosomes/ultrastructure , Base Sequence , Cryoelectron Microscopy , DEAD-box RNA Helicases/metabolism , Exons , Humans , Introns , Models, Molecular , RNA Splicing , RNA Splicing Factors/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Spliceosomes/metabolism
9.
Mol Cell ; 83(8): 1328-1339.e4, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37028420

ABSTRACT

Removal of the intron from precursor-tRNA (pre-tRNA) is essential in all three kingdoms of life. In humans, this process is mediated by the tRNA splicing endonuclease (TSEN) comprising four subunits: TSEN2, TSEN15, TSEN34, and TSEN54. Here, we report the cryo-EM structures of human TSEN bound to full-length pre-tRNA in the pre-catalytic and post-catalytic states at average resolutions of 2.94 and 2.88 Å, respectively. Human TSEN features an extended surface groove that holds the L-shaped pre-tRNA. The mature domain of pre-tRNA is recognized by conserved structural elements of TSEN34, TSEN54, and TSEN2. Such recognition orients the anticodon stem of pre-tRNA and places the 3'-splice site and 5'-splice site into the catalytic centers of TSEN34 and TSEN2, respectively. The bulk of the intron sequences makes no direct interaction with TSEN, explaining why pre-tRNAs of varying introns can be accommodated and cleaved. Our structures reveal the molecular ruler mechanism of pre-tRNA cleavage by TSEN.


Subject(s)
Endoribonucleases , RNA Precursors , Humans , Introns/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , Endoribonucleases/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA Splice Sites , RNA Splicing , Nucleic Acid Conformation , Endonucleases/genetics
10.
Mol Cell ; 82(15): 2769-2778.e4, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35705093

ABSTRACT

Pre-mRNA splicing involves two sequential reactions: branching and exon ligation. The C complex after branching undergoes remodeling to become the C∗ complex, which executes exon ligation. Here, we report cryo-EM structures of two intermediate human spliceosomal complexes, pre-C∗-I and pre-C∗-II, both at 3.6 Å. In both structures, the 3' splice site is already docked into the active site, the ensuing 3' exon sequences are anchored on PRP8, and the step II factor FAM192A contacts the duplex between U2 snRNA and the branch site. In the transition of pre-C∗-I to pre-C∗-II, the step II factors Cactin, FAM32A, PRKRIP1, and SLU7 are recruited. Notably, the RNA helicase PRP22 is positioned quite differently in the pre-C∗-I, pre-C∗-II, and C∗ complexes, suggesting a role in 3' exon binding and proofreading. Together with information on human C and C∗ complexes, our studies recapitulate a molecular choreography of the C-to-C∗ transition, revealing mechanistic insights into exon ligation.


Subject(s)
Saccharomyces cerevisiae Proteins , Spliceosomes , Exons/genetics , Humans , RNA Precursors/metabolism , RNA Splice Sites , RNA Splicing , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Small Nuclear/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spliceosomes/metabolism
11.
Nat Rev Mol Cell Biol ; 18(11): 655-670, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28951565

ABSTRACT

Precursor messenger RNA (pre-mRNA) splicing is an essential step in the flow of information from DNA to protein in all eukaryotes. Research over the past four decades has molecularly delineated the splicing pathway, including characterization of the detailed splicing reaction, definition of the spliceosome and identification of its components, and biochemical analysis of the various splicing complexes and their regulation. Structural information is central to mechanistic understanding of pre-mRNA splicing by the spliceosome. X-ray crystallography of the spliceosomal components and subcomplexes is complemented by electron microscopy of the intact spliceosome. In this Review, I discuss recent atomic-resolution structures of the intact spliceosome at different stages of the splicing cycle. These structures have provided considerable mechanistic insight into pre-mRNA splicing and have corroborated and explained a large body of genetic and biochemical data. Together, the structural data have proved that the spliceosome is a protein-directed metalloribozyme.


Subject(s)
RNA Precursors/chemistry , RNA Splicing/physiology , RNA, Catalytic/chemistry , Spliceosomes/ultrastructure , Animals , Crystallography, X-Ray , Humans , Microscopy, Electron , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Structure-Activity Relationship
12.
Cell ; 159(5): 995-1014, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25416941

ABSTRACT

Since determination of the myoglobin structure in 1957, X-ray crystallography, as the anchoring tool of structural biology, has played an instrumental role in deciphering the secrets of life. Knowledge gained through X-ray crystallography has fundamentally advanced our views on cellular processes and greatly facilitated development of modern medicine. In this brief narrative, I describe my personal understanding of the evolution of structural biology through X-ray crystallography-using as examples mechanistic understanding of protein kinases and integral membrane proteins-and comment on the impact of technological development and outlook of X-ray crystallography.


Subject(s)
Crystallography, X-Ray/history , Crystallography, X-Ray/methods , Molecular Biology/history , Proteins/chemistry , Animals , Antineoplastic Agents/chemistry , Databases, Protein , History, 20th Century , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism , Proteins/genetics , Proteins/metabolism
13.
Proc Natl Acad Sci U S A ; 121(9): e2312784121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381783

ABSTRACT

The onset of apoptosis is characterized by a cascade of caspase activation, where initiator caspases are activated by a multimeric adaptor complex known as the apoptosome. In Drosophila melanogaster, the initiator caspase Dronc undergoes autocatalytic activation in the presence of the Dark apoptosome. Despite rigorous investigations, the activation mechanism for Dronc remains elusive. Here, we report the cryo-EM structures of an auto-inhibited Dark monomer and a single-layered, multimeric Dark/Dronc complex. Our biochemical analysis suggests that the auto-inhibited Dark oligomerizes upon binding to Dronc, which is sufficient for the activation of both Dark and Dronc. In contrast, the previously observed double-ring Dark apoptosome may represent a non-functional or "off-pathway" conformation. These findings expand our understanding on the molecular mechanism of apoptosis in Drosophila.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Apoptosomes/chemistry , Caspases/metabolism , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism
14.
Proc Natl Acad Sci U S A ; 121(15): e2313903121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557178

ABSTRACT

Electromagnetic radiation (EMR) in the environment, particularly in the microwave range, may constitute a public health concern. Exposure to 2.4 GHz EMR modulated by 100 Hz square pulses was recently reported to markedly increase wakefulness in mice. Here, we demonstrate that a similar wakefulness increase can be induced by the modulation frequency of 1,000 Hz, but not 10 Hz. In contrast to the carrier frequency of 2.4 GHz, 935 MHz EMR of the same power density has little impact on wakefulness irrespective of modulation frequency. Notably, the replacement of the 100 Hz square-pulsed modulation by sinusoidal-pulsed modulation of 2.4 GHz EMR still allows a marked increase of wakefulness. In contrast, continuous sinusoidal amplitude modulation of 100 Hz with the same time-averaged power output fails to trigger any detectable change of wakefulness. Therefore, alteration of sleep behavior by EMR depends upon not just carrier frequency but also frequency and mode of the modulation. These results implicate biological sensing mechanisms for specific EMR in animals.


Subject(s)
Electromagnetic Radiation , Wakefulness , Mice , Animals , Electromagnetic Fields
15.
Proc Natl Acad Sci U S A ; 121(12): e2316230121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483987

ABSTRACT

Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.


Subject(s)
Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Humans , TRPP Cation Channels/metabolism , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Cryoelectron Microscopy , Molecular Docking Simulation , Ion Channels
18.
Nucleic Acids Res ; 52(6): 3291-3309, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38165050

ABSTRACT

The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (∼200 000 versus ∼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.


Subject(s)
RNA Precursors , RNA Splicing , RNA-Binding Proteins , Retinal Degeneration , Animals , Humans , Methylation , Nucleic Acid Conformation , Retinal Degeneration/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing/genetics , RNA, Small Nuclear/metabolism , Saccharomyces cerevisiae/genetics , Spliceosomes/genetics , Spliceosomes/metabolism
19.
Cell ; 141(3): 446-57, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20434985

ABSTRACT

The CED-4 homo-oligomer or apoptosome is required for initiation of programmed cell death in Caenorhabditis elegans by facilitating autocatalytic activation of the CED-3 caspase zymogen. How the CED-4 apoptosome assembles and activates CED-3 remains enigmatic. Here we report the crystal structure of the complete CED-4 apoptosome and show that it consists of eight CED-4 molecules, organized as a tetramer of an asymmetric dimer via a previously unreported interface among AAA(+) ATPases. These eight CED-4 molecules form a funnel-shaped structure. The mature CED-3 protease is monomeric in solution and forms an active holoenzyme with the CED-4 apoptosome, within which the protease activity of CED-3 is markedly stimulated. Unexpectedly, the octameric CED-4 apoptosome appears to bind only two, not eight, molecules of mature CED-3. The structure of the CED-4 apoptosome reveals shared principles for the NB-ARC family of AAA(+) ATPases and suggests a mechanism for the activation of CED-3.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/metabolism , Calcium-Binding Proteins/chemistry , Amino Acid Sequence , Animals , Apoptosomes/metabolism , Apoptotic Protease-Activating Factor 1/metabolism , Caenorhabditis elegans/chemistry , Caspases/chemistry , Crystallography, X-Ray , Models, Molecular , Sequence Alignment , X-Ray Diffraction
20.
Nature ; 565(7738): 192-197, 2019 01.
Article in English | MEDLINE | ID: mdl-30598546

ABSTRACT

Aberrant cleavage of Notch by γ-secretase leads to several types of cancer, but how γ-secretase recognizes its substrate remains unknown. Here we report the cryo-electron microscopy structure of human γ-secretase in complex with a Notch fragment at a resolution of 2.7 Å. The transmembrane helix of Notch is surrounded by three transmembrane domains of PS1, and the carboxyl-terminal ß-strand of the Notch fragment forms a ß-sheet with two substrate-induced ß-strands of PS1 on the intracellular side. Formation of the hybrid ß-sheet is essential for substrate cleavage, which occurs at the carboxyl-terminal end of the Notch transmembrane helix. PS1 undergoes pronounced conformational rearrangement upon substrate binding. These features reveal the structural basis of Notch recognition and have implications for the recruitment of the amyloid precursor protein by γ-secretase.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/ultrastructure , Cryoelectron Microscopy , Receptors, Notch/metabolism , Receptors, Notch/ultrastructure , Amino Acid Sequence , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Animals , Humans , Mice , Models, Molecular , Protein Binding , Receptors, Notch/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL