ABSTRACT
There are four genogroups and 18 genotypes of human sapoviruses (HuSaVs) responsible for acute gastroenteritis. To comprehend their antigenic and virological differences, it is crucial to obtain viral stocks of the different strains. Previously, we utilized the human duodenum-derived cell line HuTu80, and glycocholate, a conjugated bile acid, to replicate and propagate GI.1, GI.2, and GII.3 HuSaVs (H. Takagi et al., Proc Natl Acad Sci U S A 117:32078-32085, 2020, https://10.1073/pnas.2007310117). First, we investigated the impact of HuTu80 passage number on HuSaV propagation. Second, we demonstrated that taurocholate improved the initial replication success rate and viral RNA levels in fecal specimens relative to glycocholate. By propagating 15 HuSaV genotypes (GI.1-7, GII.1-5, -8, and GV.1-2) and accomplishing preparation of viral stocks containing 1.0 Ć 109 to 3.4 Ć 1011 viral genomic copies/mL, we found that all strains required bile acids for replication, with GII.4 showing strict requirements for taurocholate. The deduced VP1 sequences of the viruses during the scale-up of serial passaged virus cultures were either identical or differed by only two amino acids from the original sequences in feces. In addition, we purified virions from nine strains of different genotypes and used them as immunogens for antiserum production. Enzyme-linked immunosorbent assays (ELISAs) using rabbit and guinea pig antisera for each of the 15 strains of different genotypes revealed distinct antigenicity among the propagating viruses across genogroups and differences between genotypes. Acquisition of biobanked viral resources and determination of key culture conditions will be valuable to gain insights into the common mechanisms of HuSaV infection. IMPORTANCE: The control of human sapovirus, which causes acute gastroenteritis in individuals of all ages, is challenging because of its association with outbreaks similar to those caused by human norovirus. The establishment of conditions for efficient viral propagation of various viral strains is essential for understanding the infection mechanism and identifying potential control methods. In this study, two critical factors for human sapovirus propagation in a conventional human duodenal cell line were identified, and 15 strains of different genotypes that differed at the genetic and antigenic levels were isolated and used to prepare virus stocks. The preparation of virus stocks has not been successful for noroviruses, which belong to the same family as sapoviruses. Securing virus stocks of multiple human sapovirus strains represents a significant advance toward establishing a reliable experimental system that does not depend on limited virus-positive fecal material.
Subject(s)
Caliciviridae Infections , Duodenum , Genotype , Sapovirus , Virus Replication , Sapovirus/genetics , Humans , Duodenum/virology , Duodenum/immunology , Cell Line , Animals , Caliciviridae Infections/virology , Caliciviridae Infections/immunology , Gastroenteritis/virology , Antigens, Viral/immunology , Antigens, Viral/genetics , Feces/virology , Rabbits , Guinea Pigs , Genetic Variation , RNA, Viral/genetics , Virus Cultivation , Bile Acids and SaltsABSTRACT
Sapoviruses are increasingly being recognized as pathogens associated with gastroenteritis in humans. Human sapoviruses are currently assigned to 18 genotypes (GI.1-7, GII.1-8, GIV.1, and GV.1-2) based on the sequence of the region encoding the major structural protein. In this study, we evaluated 11 polymerase chain reaction (PCR) assays using published and newly designed/modified primers and showed that four PCR assays with different primer combinations amplified all of the tested human sapovirus genotypes using either synthetic DNA or cDNA prepared from human sapovirus-positive fecal specimens. These assays can be used as improved broadly reactive screening tests or as tools for molecular characterization of human sapoviruses.
Subject(s)
Caliciviridae Infections/virology , DNA Primers/chemistry , Gastroenteritis/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Sapovirus/genetics , Viral Structural Proteins/genetics , Base Sequence , Caliciviridae Infections/diagnosis , DNA Primers/genetics , Feces/virology , Gastroenteritis/diagnosis , Gene Expression , Genotype , Humans , Molecular Typing/methods , Phylogeny , Sapovirus/classification , Sapovirus/isolation & purification , Sequence AlignmentABSTRACT
Sapoviruses are associated with acute gastroenteritis. Human sapoviruses are classified into four distinct genogroups (GI, GII, GIV, and GV) based on their capsid gene sequences. A TaqMan probe-based real-time reverse transcription-polymerase chain reaction (RT-PCR) assay that detects the representative strains of these four genogroups is widely used for screening fecal specimens, shellfish, and environmental water samples. However, since the development of this test, more genetically diverse sapovirus strains have been reported, which are not detectable by the previously established assays. In this study, we report the development of a broader-range sapovirus real-time RT-PCR assay. The assay can detect 2.5 Ć 107 and 2.5 Ć 10 1 copies of sapovirusĀ and therefore is as sensitive as the previous test. Analysis using clinical stool specimens or synthetic DNA revealed that the new system detected strains representative of all the 18 human sapovirus genotypes: GI.1-7, GII.1-8, GIV.1, and GV.1, 2. No cross-reactivity was observed against other representative common enteric viruses (norovirus, rotavirus, astrovirus, and adenovirus). This new assay will be useful as an improved, broadly reactive, and specific screening tool for human sapoviruses.
Subject(s)
RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Sapovirus/genetics , Caliciviridae Infections/diagnosis , Caliciviridae Infections/virology , DNA Primers/genetics , DNA Probes , Feces/virology , Genetic Variation , Genotype , Humans , Sapovirus/classification , Sensitivity and SpecificityABSTRACT
Campylobacter enteritis (En) is the most frequently diagnosed bacterial En worldwide, including in Japan. Campylobacter spp. can also cause bloodstream infection (BSI), reactive arthritis, and Guillain-BarrĆ© syndrome. The purpose of this study was to clarify the characteristics of Campylobacter jejuni strains that cause BSI in comparison with En-causing strains. BSI strains (nĀ =Ā 40) and En strains that caused food poisoning (nĀ =Ā 67) were collected in Japan. Our study revealed that ST-4526 was predominant in BSI strains, and the overall distribution of sequence types was similar in both BSI and En strains. Differences in CPS type distribution might be related to the pathogenesis of bacteremia. Quinolone resistance rates were higher than those reported in previous studies, and strains resistant to both quinolones and tetracyclines were more frequently observed in BSI strains. Finally, we report a case of mixed infection with different STs in BSI.
Subject(s)
Bacteremia , Campylobacter Infections , Campylobacter jejuni , Enteritis , Anti-Bacterial Agents/pharmacology , Bacteremia/epidemiology , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Enteritis/epidemiology , Enteritis/microbiology , Humans , Japan/epidemiology , Molecular EpidemiologyABSTRACT
After the first case of coronavirus disease 2019 (COVID-19) in Japan on 15 January 2020, multiple nationwide COVID-19 clusters were identified by the end of February. The Japanese government focused on mitigating the emerging COVID-19 clusters by conducting active nationwide epidemiological surveillance. However, an increasing number of cases continued to appear until early April 2020, many with unclear infection routes and no recent history of travel outside Japan. We aimed to evaluate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome sequences from the COVID-19 cases that appeared until early April 2020 and to characterize their genealogical networks in order to demonstrate possible routes of spread in Japan. Nasopharyngeal specimens were collected from patients, and reverse transcription-quantitative PCR tests for SARS-CoV-2 were performed. Positive RNA samples were subjected to whole-genome sequencing, and a haplotype network analysis was performed. Some of the primary clusters identified during January and February 2020 in Japan descended directly from the Wuhan-Hu-1-related isolates from China and other distinct clusters. Clusters were almost contained until mid-March; the haplotype network analysis demonstrated that the COVID-19 cases from late March through early April may have created an additional large cluster related to the outbreak in Europe, leading to additional spread within Japan. In conclusion, genome surveillance has suggested that there were at least two distinct SARS-CoV-2 introductions into Japan from China and other countries.IMPORTANCE This study aimed to evaluate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome sequences from COVID-19 cases and to characterize their genealogical networks to demonstrate possible routes of spread in Japan. We found that there were at least two distinct SARS-CoV-2 introductions into Japan, initially from China and subsequently from other countries, including Europe. Our findings can help understand how SARS-CoV-2 entered Japan and contribute to increased knowledge of SARS-CoV-2 in Asia and its association with implemented stay-at-home/shelter-in-place/self-restraint/lockdown measures. This study suggested that it is necessary to formulate a more efficient containment strategy using real-time genome surveillance to support epidemiological field investigations in order to highlight potential infection linkages and mitigate the next wave of COVID-19 in Japan.
Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , RNA, Viral/analysis , Whole Genome Sequencing , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Coronavirus Infections/virology , Emigration and Immigration , Haplotypes , Health Policy , Humans , Japan/epidemiology , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2ABSTRACT
Sapoviruses, members of the family Caliciviridae, are genetically highly diverse. We report here the first complete genome sequence of a genogroup V genotype 2 sapovirus strain, NGY-1, detected from fecal samples of a suspected foodborne gastroenteritis outbreak, determined using a metagenomic sequencing approach.
ABSTRACT
Streptococcal toxic shock syndrome (STSS) is a re-emerging infectious disease in many developed countries. Recent studies have suggested that mutations in CovRS, a two-component regulatory system in Streptococcus pyogenes, play important roles in the pathogenesis of STSS. However, in vivo evidence of the significance of CovRS in human infections has not been fully demonstrated. We investigated five S. pyogenes strains isolated simultaneously from the pharynx, sputum, knee joint, cerebrospinal fluid and blood of a single STSS patient. All were emm89-type strains, and multilocus sequence typing (MLST) analysis revealed that the strains of pharynx and blood were isogenic. The growth rates of the strains from pharynx and sputum were faster than those of the other strains. Protein profiles of the culture supernatants of strains from the pharynx and sputum were also different from those of the other strains. Sequence analyses revealed that strains from the knee joint, cerebrospinal fluid and blood contained a single nucleotide difference in the covS coding region, resulting in one amino acid change, compared with the other strains. Introduction of a plasmid containing the covS gene from the pharynx strain to the blood strain increased the production of SpeB protein. This suggests that the one amino acid alteration in CovS was relevant to pathogenesis. This report supports the idea that mutated CovS plays important roles in vivo in the dissemination of S. pyogenes from the upper respiratory tract of human to aseptic tissues such as blood and cerebrospinal fluid.
Subject(s)
Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Carrier Proteins/genetics , Coinfection/microbiology , Intracellular Signaling Peptides and Proteins/genetics , Shock, Septic/microbiology , Streptococcal Infections/microbiology , Streptococcus pyogenes/genetics , Bacterial Proteins/biosynthesis , DNA, Bacterial/genetics , Exotoxins/biosynthesis , Histidine Kinase , Humans , Multilocus Sequence Typing , Mutant Proteins/genetics , Mutation, Missense , Streptococcus pyogenes/classification , Streptococcus pyogenes/growth & development , Streptococcus pyogenes/isolation & purificationSubject(s)
Bone Marrow Transplantation/adverse effects , Graft vs Host Disease/drug therapy , Immunocompromised Host , Influenza A Virus, H1N1 Subtype , Influenza, Human/complications , Lymphohistiocytosis, Hemophagocytic/virology , Humans , Immunosuppressive Agents/therapeutic use , Influenza, Human/immunology , Lymphohistiocytosis, Hemophagocytic/physiopathology , Lymphoma, Mantle-Cell/surgery , Male , Middle Aged , Neoplasm Recurrence, Local/surgery , Pandemics , Tacrolimus/therapeutic useABSTRACT
A novel bacterium that infects laboratory rats was isolated from wild Rattus norvegicus rats in Japan. Transmission electron microscopy of the spleen tissue revealed small cocci surrounded by an inner membrane and a thin, rippled outer membrane in a membrane-bound inclusion within the cytoplasm of endothelial cells. Phylogenetic analysis of the 16S rRNA gene sequence of the bacterium found in R. norvegicus rats and Ixodes ovatus ticks in Japan revealed that the organism represents a novel clade in the family Anaplasmataceae, which includes the Schotti variant found in Ixodes ricinus ticks in the Netherlands and the Ehrlichia-like Rattus strain found in R. norvegicus rats from China. The novel clade was confirmed by phylogenetic analysis of groESL sequences found in R. norvegicus rats and Ixodes ovatus ticks in Japan. No serological cross-reactivity was detected between this bacterium and members of the genera Anaplasma, Ehrlichia or Neorickettsia in the family Anaplasmataceae. It is proposed that this new cluster of bacteria should be designated 'Candidatus Neoehrlichia mikurensis'.