Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Environ Sci Technol ; 54(18): 11191-11200, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32786551

ABSTRACT

Expanded polystyrene (EPS) is a common plastic marine debris found in oceans worldwide. The unique "foamed" structure of EPS, which is composed of thin layers, is more vulnerable to fragmentation than bulk plastics. However, the production rate of micro- and nanoplastics by the fragmentation of EPS following sunlight exposure remains largely unknown. Here, we determined the fragmentation rate and weight loss of EPS in an outdoor weathering experiment that ran for 24 months. It took only 1 month for the weight of an EPS box to decline by 5% due to photodegradation, and approximately 6.7 × 107 micro- and nanoparticles/cm2 could be produced at a latitude of 34 °N. These results indicate that macro EPS debris can continually produce a massive number of particles within a relatively short exposure duration. The findings provide useful information to inform policymakers how rapidly to remove "likely fragmented" plastic litter from the environment.


Subject(s)
Polystyrenes , Water Pollutants, Chemical , Microplastics , Oceans and Seas , Plastics , Sunlight , Water Pollutants, Chemical/analysis
2.
Environ Sci Technol ; 52(21): 12188-12197, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30295469

ABSTRACT

This is the first survey to investigate the vertical distribution and composition of microplastics >20 µm at the surface (0-0.2 m; bulk sample) and in the water column (3-58 m depth; pump) of six semi-enclosed bays and two nearshore areas of South Korea. The average microplastic abundance of 41 stations at all sampling depths was 871 particles/m3, and the microplastic abundance near urban areas (1051 particles/m3) was significantly higher than that near rural areas (560 particles/m3). Although the average microplastic abundances in the midcolumn (423 particles/m3) and bottom water (394 particles/m3) were approximately 4 times lower than that of surface water (1736 particles/m3), microplastics prevailed throughout the water column in concentrations of 10-2000 particles/m3. The average sizes of fragment and fiber type microplastics were 197 and 752 µm, respectively. Although the polymer composition differed by depth depending on the particle size and density, polypropylene and polyethylene predominated throughout the water column regardless of their low density and particle size. Finally, the middle and bottom water samples contained higher abundances of microplastics than predicted by a model based on physical mixing, indicating that biological interactions also influence the downward movement of low-density microplastics.


Subject(s)
Plastics , Water Pollutants, Chemical , Bays , Environmental Monitoring , Republic of Korea
4.
Environ Sci Technol ; 51(8): 4368-4376, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28249388

ABSTRACT

It is important to understand the fragmentation processes and mechanisms of plastic litter to predict microplastic production in the marine environment. In this study, accelerated weathering experiments were performed in the laboratory, with ultraviolet (UV) exposure for up to 12 months followed by mechanical abrasion (MA) with sand for 2 months. Fragmentation of low-density polyethylene (PE), polypropylene (PP), and expanded polystyrene (EPS) was evaluated under conditions that simulated a beach environment. PE and PP were minimally fragmented by MA without photooxidation by UV (8.7 ± 2.5 and 10.7 ± 0.7 particles/pellet, respectively). The rate of fragmentation by UV exposure duration increased more for PP than PE. A 12-month UV exposure and 2-month MA of PP and PE produced 6084 ± 1061 and 20 ± 8.3 particles/pellet, respectively. EPS pellets were susceptible to MA alone (4220 ± 33 particles/pellet), while the combination of 6 months of UV exposure followed by 2 months of MA produced 12,152 ± 3276 particles/pellet. The number of fragmented polymer particles produced by UV exposure and mechanical abrasion increased with decreasing size in all polymer types. The size-normalized abundance of the fragmented PE, PP, and EPS particles according to particle size after UV exposure and MA was predictable. Up to 76.5% of the initial EPS volume was unaccounted for in the final volume of pellet produced particle fragments, indicating that a large proportion of the particles had fragmented into undetectable submicron particles.


Subject(s)
Polymers , Water Pollutants, Chemical , Plastics , Polyethylene , Polystyrenes
5.
Arch Environ Contam Toxicol ; 73(2): 301-309, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28528411

ABSTRACT

The temporal changes in the frequency and degree of imposex and tributyltin (TBT) levels in gastropod (Reishia clavigera) were evaluated in Jinhae Bay, 5 and 10 years after the total ban on TBT usage in South Korea. The frequency and degree of imposex decreased significantly after the ban, accompanied by an increase in the female-to-male ratio. The TBT concentrations in R. clavigera also decreased significantly after the ban. There were good correlations between the TBT concentration in rock shell and both the degree of imposex and the female-to-male ratio. The total TBT ban effectively reduced the TBT levels and the frequency and degree of imposex in R. clavigera. However, the current low exposure level in the study area is still sufficient to cause imposex in R. clavigera. More time is needed to reduce the TBT levels to levels that do not have adverse biological effects on R. clavigera.


Subject(s)
Environmental Policy , Gastropoda/physiology , Trialkyltin Compounds/toxicity , Water Pollutants, Chemical/toxicity , Water Pollution, Chemical/legislation & jurisprudence , Animals , Female , Male , Republic of Korea , Sex Ratio , Trialkyltin Compounds/analysis , Water Pollutants, Chemical/analysis
6.
Arch Environ Contam Toxicol ; 73(1): 93-102, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28695253

ABSTRACT

Approximately 10,900 t of crude oil was released 10 km off the west coast of Korea after the collision between the oil tanker Hebei Spirit and a barge carrying a crane in December 2007. To assess the areal extent and temporal trends of PAH contamination, 428 sediment samples were collected from December 2007 through May 2015 for PAH analysis. Sedimentary PAH concentrations measured immediately after the spill ranged from 3.2 to 71,200 ng g-1, with a mean of 3800 ng g-1. Increases in PAH concentrations were observed at stations 7-23, which were heavily oiled due to tidal currents and northwesterly wind that transported the spilled oil to these locations. Mean and maximum PAH concentrations decreased drastically from 3800 to 88.5 and 71,200 to 1700 ng g-1, respectively, 4 months after the spill. PAH concentrations highly fluctuated until September 2008 and then decreased slowly to background levels. Reduction rate was much faster at the sandy beaches (k = 0.016) than in the muddy sites (k = 0.001). In muddy sediments, low attenuation due to low flushing rate in the mostly anaerobic sediment possibly contributed the persistence of PAHs. By May 2015 (~7.5 years after the spill), mean and maximum PAH concentrations decreased by 54 and 481 times, respectively, compared with the peak concentrations. The sedimentary PAH concentrations in the monitoring area have returned to regional background levels.


Subject(s)
Environmental Monitoring , Petroleum Pollution/analysis , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Republic of Korea
7.
Environ Sci Technol ; 50(10): 4951-60, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27100560

ABSTRACT

There is growing concern over plastic debris and their fragments as a carrier for hazardous substances in marine ecosystem. The present study was conducted to provide field evidence for the transfer of plastic-associated chemicals to marine organisms. Hexabromocyclododecanes (HBCDs), brominated flame retardants, were recently detected in expanded polystyrene (styrofoam) marine debris. We hypothesized that if styrofoam debris acts as a source of the additives in the marine environment, organisms inhabiting such debris might be directly influenced by them. Here we investigated the characteristics of HBCD accumulation by mussels inhabiting styrofoam. For comparison, mussels inhabiting different substrates, such as high-density polyethylene (HDPE), metal, and rock, were also studied. The high HBCD levels up to 5160 ng/g lipid weight and the γ-HBCD dominated isomeric profiles in mussels inhabiting styrofoam strongly supports the transfer of HBCDs from styrofoam substrate to mussels. Furthermore, microsized styrofoam particles were identified inside mussels, probably originating from their substrates.


Subject(s)
Aquatic Organisms , Environmental Monitoring , Flame Retardants , Polyethylene , Waste Products
8.
Environ Sci Technol ; 50(11): 5972-80, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27144452

ABSTRACT

A crude oil and the coastal sediments that were affected by the Hebei Spirit Oil Spill (HSOS) of Taean, Korea were investigated for thyroid hormone disruption potentials. Water-accommodated fractions (WAFs) of Iranian Heavy crude oil, the major oil type of HSOS, and the porewater or leachate of sediment samples collected along the coast line of Taean were tested for thyroid disruption using developing zebrafish and/or rat pituitary GH3 cells. Major polycyclic aromatic hydrocarbons (PAHs) and their alkylated forms were also measured from the test samples. In zebrafish larvae, significant decreases in whole-body thyroxine (T4) and triiodothyronine (T3) levels, along with transcriptional changes of thyroid regulating genes, were observed following 5 day exposure to WAFs. In GH3 cells, transcriptions of thyroid regulating genes were influenced following the exposure to the sediment samples, but the pattern of the regulatory change was different from those observed from the WAFs. Composition of PAHs and their alkylated homologues in the WAFs could partly explain this difference. Our results clearly demonstrate that WAFs of crude oil can disrupt thyroid function of larval zebrafish. Sediment samples also showed thyroid disrupting potentials in the GH3 cell, even several years after the oil spill. Long-term ecosystem consequences of thyroid hormone disruption due to oil spill deserve further investigation.


Subject(s)
Petroleum Pollution , Petroleum , Animals , Iran , Thyroid Hormones , Water , Zebrafish
9.
Anal Bioanal Chem ; 408(12): 3281-93, 2016 May.
Article in English | MEDLINE | ID: mdl-26898203

ABSTRACT

This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

10.
Environ Sci Technol ; 49(22): 13639-48, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26458192

ABSTRACT

Interspecific difference in the developmental toxicity of crude oil to embryonic fish allows the prediction of injury extent to a number of resident fish species in oil spill sites. This study clarifies the comparative developmental effects of Iranian heavy crude oil (IHCO) on the differences of biouptake and toxic sensitivity between embryonic spotted sea bass (Lateolabrax maculates) and olive flounder (Paralichthys olivaceus). From 24 h after exposure to IHCO, several morphological defects were observed in both species of embryonic fish, including pericardial edema, dorsal curvature of the trunk, developmental delay, and reduced finfolds. The severity of defects was greater in flounder compared to that in sea bass. While flounder embryos accumulated higher embryo PAH concentrations than sea bass, the former showed significantly lower levels of CYP1A expression. Although bioconcentration ratios were similar between the two species for some PAHs, phenanthrenes and dibenzothiophenes showed selectively higher bioconcentration ratios in flounder, suggesting that this species has a reduced metabolic capacity for these compounds. While consistent with a conserved cardiotoxic mechanism for petrogenic PAHs across diverse marine and freshwater species, these findings indicate that species-specific differences in toxicokinetics can be an important factor underlying species' sensitivity to crude oil.


Subject(s)
Bass/embryology , Flounder/embryology , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aryl Hydrocarbon Hydroxylases/metabolism , Bass/metabolism , Ecotoxicology/methods , Embryo, Nonmammalian , Flounder/metabolism , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Polycyclic Aromatic Hydrocarbons/toxicity , Species Specificity , Toxicokinetics , Water Pollutants, Chemical/pharmacokinetics
11.
Arch Environ Contam Toxicol ; 69(3): 265-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26329498

ABSTRACT

Since their ubiquity in the ocean and marine organisms was first revealed, global concern about microplastics has grown considerably. The North Pacific Ocean and the adjacent marginal seas have high levels of microplastic contamination compared with the global average. This special issue on microplastics was organized by the North Pacific Marine Science Organization to share information on microplastic pollution in the North Pacific region. The special issue highlights high levels of contamination in the North Pacific both on shorelines and at the sea surface. Particularly high levels of contamination were reported on the western and southern coasts of Korea. Sources, including sewage discharge, aquaculture, and shipyards, were implicated. With the direction and energy of surface winds and currents have an important influence on shoreline patterns of distribution. The special issue also demonstrates potential for ingestion of microplastic by small planktonic organisms at the base of the food chain. A wide range of chemicals are associated with plastic debris and concerns are expressed about the potential for these chemicals to transfer to biota upon ingestion. As an introduction to the topic, this paper provides a brief background on microplastic contamination, highlights some key research gaps, and summarizes findings from the articles published in this issue.


Subject(s)
Plastics/analysis , Water Pollutants/analysis , Aquatic Organisms , Environmental Monitoring , Food Chain , Oceans and Seas , Pacific Ocean , Waste Products
12.
Arch Environ Contam Toxicol ; 69(3): 340-51, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26264046

ABSTRACT

The potential impact of microplastic to zooplanktivores was assessed by measuring a ratio of neustonic microplastics to zooplankton by abundance in the southern sea of Korea. Neustonic microplastics and zooplankton (0.33-2 mm) were collected using a 330-µm mesh Manta trawl in Geoje eastern Bay and Jinhae Bay before and after the rainy season in 2012 and 2013. The mean microplastic to zooplankton ratios were 0.086 (May) and 0.022 (July) in 2012, and 0.016 (June) and 0.004 (July) in 2013, indicating that zooplanktivores could be more likely to feed on microplastics than natural preys before the rainy season in 2012 and 2013. In particular, the relatively high ratio occurred in a semi-enclosed bay characterized by a shipyard and a beach resort in Geoje Bay, and at stations close to a wastewater treatment plant and an aquaculture facility in Jinhae Bay before the rainy season. Among dominant microplastics and zooplankton before the rainy season, meroplankton of macrobenthos could be confused with paint particles in Geoje Bay, 2012, whereas Styrofoam could be mistaken as immature copepods by predators in Jinhae Bay, 2013. These observations suggest that zooplanktivores could be more likely to feed on microplastics than natural preys around Geoje and Jinhae Bays before the rainy season.


Subject(s)
Environmental Monitoring , Food Chain , Plastics/analysis , Water Pollutants, Chemical/analysis , Zooplankton , Animals , Copepoda , Republic of Korea , Seawater/chemistry
13.
Arch Environ Contam Toxicol ; 69(3): 269-78, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26135299

ABSTRACT

Microplastics in marine environments are of emerging concern due to their widespread distribution, their ingestion by various marine organisms, and their roles as a source and transfer vector of toxic chemicals. However, our understanding of their abundance and distribution characteristics in surface seawater (SSW) remains limited. We investigated microplastics in the surface microlayer (SML) and the SSW at 12 stations near-shore and offshore of the Korean west coast, Incheon/Kyeonggi region. Variation between stations, sampling media, and sampling methods were compared based on abundances, size distribution, and composition profiles of microsized synthetic polymer particles. The abundance of microplastics was greater in the SML (152,688 ± 92,384 particles/m(3)) than in SSW and showed a significant difference based on the sampling method for SSWs collected using a hand net (1602 ± 1274 particles/m(3)) and a zooplankton trawl net (0.19 ± 0.14 particles/m(3)). Ship paint particles (mostly alkyd resin polymer) accounted for the majority of microplastics detected in both SML and SSWs, and increased levels were observed around the voyage routes of large vessels. This indicates that polymers with marine-based origins become an important contributor to microplastics in coastal SSWs of this coastal region.


Subject(s)
Environmental Monitoring , Plastics/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Republic of Korea , Water Pollution, Chemical/statistics & numerical data
14.
Arch Environ Contam Toxicol ; 69(3): 279-87, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26254899

ABSTRACT

Microplastic contamination of the marine environment is a worldwide concern. The abundance of microplastics was evaluated in the sea surface microlayer in Jinhae Bay, on the southern coast of Korea. The microplastics in this study are divided into paint resin particles and plastics by polymer type. The mean abundance of paint resin particles (94 ± 68 particles/L) was comparable to that of plastics (88 ± 68 particles/L). Fragmented microplastics, including paint resin particles, accounted for 75 % of total particles, followed by spherules (14 %), fibers (5.8 %), expanded polystyrene (4.6 %), and sheets (1.6 %). Alkyd (35 %) and poly(acrylate/styrene) (16 %) derived from ship paint resin were dominant, and the other microplastic samples consisted of polypropylene, polyethylene, phenoxy resin, polystyrene, polyester, synthetic rubber, and other polymers. The abundance of plastics was significantly (p < 0.05) higher in Jinhae Bay, which is surrounded by a coastal city, than along the east coast of Geoje, which is relatively open sea. The floating microplastic abundance in surface water was the highest reported worldwide.


Subject(s)
Bays/chemistry , Environmental Monitoring , Plastics/analysis , Water Pollutants, Chemical/analysis , Republic of Korea , Seawater
15.
Arch Environ Contam Toxicol ; 69(3): 352-66, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26329499

ABSTRACT

Due to their formulation and/or processing, plastics contain additives and impurities that may leach out under conditions of use and accumulate in the environment. To evaluate their role as vectors of chemical contaminants in marine environment, plastic debris (n = 19) collected from coastal beaches along with new plastics (n = 25; same or same brand) bought from local markets were screened by gas chromatography-mass spectrometry in full scan mode. Detected peaks were identified using NIST library in different polymers (polypropylene (PP) > polyethylene (PE) > PP + PE > polyethyl terephthalate > poly(acylene:styrene) with different use (food, fishery, and general use). A database on the presence of 231 different chemicals were grouped into hydrocarbons, ultra-violet (UV)-stabilizers, antioxidants, plasticizers, lubricants, intermediates, compounds for dyes and inks, flame retardants, etc. The UV326, UV327, UV328, UV320, UvinualMC80, irganox 1076, DEHP, antioxidant no 33, di-n-octylisophthalate, diisooctyl phthalate, hexanoic acid 2-ethyl-hexadecyl ester, and hydrocarbons were most frequently detected. Finding of toxic phthalates and UV stabilizers in those products having moisture contact (like bottles with short use) raised concern to humans and indicated their irregular use. The comparison between new and debris plastics clearly indicated the leaching and absorption of chemicals and supports our assumption of plastic as media for transferring these additives in marine environment.


Subject(s)
Environmental Monitoring , Plastics/analysis , Water Pollutants, Chemical/analysis , Butylated Hydroxytoluene/analogs & derivatives , Gas Chromatography-Mass Spectrometry , Phthalic Acids , Plasticizers/analysis , Polymers , Seawater/chemistry
16.
Arch Environ Contam Toxicol ; 69(3): 288-98, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26285904

ABSTRACT

The characteristics of the distribution of plastic marine debris were determined on 12 beaches in South Korea in 2013 and 2014. The abundances of large micro- (1-5 mm), meso- (5-25 mm), and macroplastics (>25 mm) were 880.4, 37.7, and 1.0 particles/m(2), respectively. Styrofoam was the most abundant debris type for large microplastics and mesoplastics (99.1 and 90.9 %, respectively). Fiber (including fabric) was the most abundant of the macroplastics (54.7 %). There were no statistical differences in the mean numbers and weights of plastic debris among three beach groups from west, south, and east coasts. No significant differences were detected between the abundances of beached plastics in high strandline and backshore for all three size groups. Spearman's rank correlation was used to determine the relationships between the three debris size classes. The abundance of large microplastics was strongly correlated with that of mesoplastics for most material types, which suggests that the contamination level of large microplastics can be estimated from that of mesoplastics. As surveying of smaller particles is more labor intensive, the surveying of mesoplastics with a 5-mm sieve is an efficient and useful way to determine "hot-spots" on beaches contaminated with large microplastics.


Subject(s)
Environmental Monitoring , Plastics/analysis , Waste Products/analysis , Water Pollutants/analysis , Bathing Beaches/statistics & numerical data , Republic of Korea
17.
Fish Shellfish Immunol ; 36(2): 467-74, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24394623

ABSTRACT

Lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α factor (LITAF) plays an important role controlling the expression of TNF-α and the other cytokine genes in the presence of LPS. However, two LITAF homologues have not been characterized in fish. In this study, we cloned two distinct LITAF (RbLITAF1 and RbLITAF2) cDNAs from rock bream (Oplegnathus fasciatus) and characterized their expression profiles after infection with Edwardsiella tarda, Streptococcus iniae or red seabream iridovirus (RSIV). The coding regions of RbLITAF1 and RbLITAF2 cDNAs were 492 bp and 417 bp, encoding 153 and 138 amino acid residues, respectively. The genes consisted of a LITAF domain. RbLITAF1 was highly expressed in the spleen and heart of healthy rock bream, whereas RbLITAF2 was highly expressed in the gill, intestine and stomach. In spleen, the gene expression of RbLITAF1 and RbLITAF2 were increased until 5 days post-infection (dpi), and then decreased at 7 dpi. In kidney, E. tarda and RSIV infection led to induction of the RbLITAF1 gene at 1 dpi, RbLITAF2 gene was down-regulated after pathogen infection. These results suggest that RbLITAFs may be involved in the LITAF-mediated immune response and regulate systemic immune responses against pathogen infection.


Subject(s)
Fish Proteins/genetics , Gene Expression Regulation , Perciformes/genetics , Perciformes/immunology , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/genetics , DNA, Complementary/metabolism , Edwardsiella tarda/physiology , Fish Proteins/chemistry , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Immunity, Innate/drug effects , Iridoviridae/physiology , Lipopolysaccharides/pharmacology , Molecular Sequence Data , Perciformes/classification , Phylogeny , RNA/genetics , RNA/metabolism , Sequence Alignment/veterinary , Streptococcus/physiology
18.
Environ Sci Technol ; 48(7): 4153-62, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24579908

ABSTRACT

Naphthenic acids (NAs) as toxic components in most petroleum sources are suspected to be one of the major pollutants in the aquatic environment following oil spills, and the polarity and persistence of NAs make it a potential indicator for oil contamination. However, the contamination and potential effects of pollutants in oil spill affected areas remain unknown. To investigate NAs in oil spill affected areas, a sensitive method was first established for analysis of NAs, together with oxy-NAs in sediment samples by UPLC-QTOF-MS. Then the method was applied to determine the NA mixtures in crude oil, weathered oil, and sediments from the spilled sites after the Hebei Spirit oil spill, Taean, South Korea (Dec. 2007). Concentrations of NAs, O3-NAs, and O4-NAs were found to be 7.8-130, 3.6-44, and 0.8-20 mg kg(-1) dw in sediments from the Taean area, respectively, which were much greater than those measured in the reference sites of Manlipo and Anmyundo beaches. Concentrations of NAs were 50-100 times greater than those (0.077-2.5 mg kg(-1) dw) of PAHs in the same sediment samples, thus the ecological risk of NAs in oil spill affected areas deserves more attention. The sedimentary profiles of oil-derived NAs and background NAs centered around compounds with 21-35 and 12-21 carbons, respectively, indicating that the crude-derived NA mixtures originating from the 2007 oil spill were persistent. Acyclic NAsn=5-20 were easily degraded compared to cyclic NAsn=21-41 during the oil weathering processes, and the ratio of oxy-NAsn=21-41 relative to NAsn=21-41 could be a novel index to estimate the degree of oil weathering in sediments. Altogether, the persistent oil-derived NAsn=21-41 could be used as a potential indicator for oil-specific contamination, as such compounds would not be much affected by the properties of coastal sediments possibly due to the high sorption of the negatively charged compounds (NAs) in sediment.


Subject(s)
Carboxylic Acids/analysis , Geologic Sediments/chemistry , Petroleum Pollution/analysis , Seawater/chemistry , Water Pollution/analysis , Geography , Limit of Detection , Mass Spectrometry , Republic of Korea , Weather
19.
Environ Sci Technol ; 48(5): 2962-70, 2014.
Article in English | MEDLINE | ID: mdl-24490901

ABSTRACT

A prediction model for estimating the ecotoxicity of the water-accommodated fraction (WAF) and water-soluble fraction (WSF) of heavy crude oil is proposed. Iranian heavy crude oil (IHC), one of the major components of the Hebei Spirit oil spill in Korea in 2007, was used as a model crude oil for the preparation of the WAF and the WSF. Luminescence inhibition of Vibrio fischeri was chosen as the model ecotoxicity test for evaluating the baseline toxicity of aromatic hydrocarbons in the IHC. The measured concentration of each chemical species in WAF and WSF agreed well with the predicted soluble concentration calculated using Raoult's law from the measured amount in the IHC. This indicates that the toxic potential of an oil mixture can be evaluated from the dissolved concentration of each species, which in turn, may be predicted from the composition of the crude or weathered oils. In addition, the contribution of each species in the mixture to the apparent luminescence inhibition by the WAF and the WSF was assessed using a concentration-addition model. The relative contributions of benzene, toluene, ethylbenzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), and alkylated PAHs in luminescence inhibition were estimated to be 76%, 2%, and 21%, respectively. It was further identified that C3- and C4-naphthalenes were the most important aromatic hydrocarbons responsible for baseline toxicity. This indicates that alkylated PAHs would be the major components of oil-spill residue. Further research is needed to evaluate the fate and ecotoxicity of alkylated PAHs.


Subject(s)
Aliivibrio fischeri/drug effects , Hydrocarbons/toxicity , Models, Theoretical , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/metabolism , Hydrocarbons/analysis , Hydrocarbons/chemistry , Luminescence , Petroleum/analysis , Solubility , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
20.
Environ Sci Technol ; 48(16): 9014-21, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25059595

ABSTRACT

Determining the exact abundance of microplastics on the sea surface can be susceptible to the sampling method used. The sea surface microlayer (SML) can accumulate light plastic particles, but this has not yet been sampled. The abundance of microplastics in the SML was evaluated off the southern coast of Korea. The SML sampling method was then compared to bulk surface water filtering, a hand net (50 µm mesh), and a Manta trawl net (330 µm mesh). The mean abundances were in the order of SML water > hand net > bulk water > Manta trawl net. Fourier transform infrared spectroscopy (FTIR) identified that alkyds and poly(acrylate/styrene) accounted for 81 and 11%, respectively, of the total polymer content of the SML samples. These polymers originated from paints and the fiber-reinforced plastic (FRP) matrix used on ships. Synthetic polymers from ship coatings should be considered to be a source of microplastics. Selecting a suitable sampling method is crucial for evaluating microplastic pollution.


Subject(s)
Environmental Monitoring/methods , Plastics/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis , Organic Chemicals , Particle Size , Plastics/chemistry , Republic of Korea , Ships , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL