ABSTRACT
Gibberellin (GA) is a major plant hormone that regulates plant growth and development and is widely used as a plant growth regulator in agricultural production. There is an increasing demand for function-limited GA mimics due to the limitations on the agronomical application of GA to crops, including GA's high cost of producing and its leading to the crops' lodging. AC94377, a substituted phthalimide, is a chemical that mimics the growth-regulating activity of GAs in various plants, despite its structural difference. Although AC94377 is widely studied in many weeds and crops, its mode of action as a GA mimic is largely unknown. In this study, we confirmed that AC94377 displays GA-like activities in Arabidopsis (Arabidopsis thaliana) and demonstrated that AC94377 binds to the Arabidopsis GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor (AtGID1), forms the AtGID1-AC94377-DELLA complex, and induces the degradation of DELLA protein. Our results also indicated that AC94377 is selective for a specific subtype among three AtGID1s and that the selectivity of AC94377 is attributable to a single residue at the entrance to the hydrophobic pocket of GID1. We conclude that AC94377 is a GID1 agonist with selectivity for a specific subtype of GID1, which could be further developed and used as a function-limited regulator of plant growth in both basic study and agriculture.
Subject(s)
Arabidopsis Proteins/agonists , Arabidopsis/drug effects , Phthalimides/chemistry , Phthalimides/pharmacology , Receptors, Cell Surface/agonists , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Germination/drug effects , Gibberellins/metabolism , Hypocotyl/drug effects , Phthalimides/metabolism , Plants, Genetically Modified , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Signal Transduction/drug effects , Nicotiana/geneticsABSTRACT
Gibberellin (GA) plays versatile roles in the regulation of plant growth and development and therefore is widely used as a regulator in agriculture. We performed a chemical library screening and identified a chemical, named 67D, as a stimulator of seed germination that was suppressed by paclobutrazol (PAC), a GA biosynthesis inhibitor. In vitro binding assays indicated that 67D binds to the GID1 receptor. Further studies on the structure-activity relationship identified a chemical, named chemical 6, that strongly promoted seed germination suppressed by PAC. Chemical 6 was further confirmed to promote the degradation of RGA (for repressor of ga1-3), a DELLA protein, and suppress the expression levels of GA3ox1 in the same manner as GA does. 67D and its analogs are supposed to be agonists of GID1 and are expected to be utilized in agriculture and basic research as an alternative to GA.