ABSTRACT
Heat stroke, a hazardous hyperthermia-related illness, is characterized by CNS injury, particularly long-lasting brain damage. A root cause for hyperthermic neurological damage is heat-induced proteotoxic stress through protein aggregation, a known causative agent of neurological disorders. Stress magnitude and enduring persistence are highly correlated with hyperthermia-associated neurological damage. We used an untargeted proteomic approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify and characterize time-series proteome-wide changes in dose-responsive proteotoxic stress models in medulloblastoma [Daoy], neuroblastoma [SH-SY5Y], and differentiated SH-SY5Y neuron-like cells [SH(D)]. An integrated analysis of condition-time datasets identified global proteome-wide differentially expressed proteins (DEPs) as part of the heat-induced proteotoxic stress response. The condition-specific analysis detected higher DEPs and upregulated proteins in extreme heat stress with a relatively conservative and tight regulation in differentiated SH-SY5Y neuron-like cells. Functional network analysis using ingenuity pathway analysis (IPA) identified common intercellular pathways associated with the biological processes of protein, RNA, and amino acid metabolism and cellular response to stress and membrane trafficking. The condition-wise temporal pathway analysis in the differentiated neuron-like cells detects a significant pathway, functional, and disease association of DEPs with processes like protein folding and protein synthesis, Nervous System Development and Function, and Neurological Disease. An elaborate dose-dependent stress-specific and neuroprotective cellular signaling cascade is also significantly activated. Thus, our study provides a comprehensive map of the heat-induced proteotoxic stress response associating proteome-wide changes with altered biological processes. This helps to expand our understanding of the molecular basis of the heat-induced proteotoxic stress response with potential translational connotations.
Subject(s)
Neurons , Proteome , Proteomics , Humans , Neurons/metabolism , Proteomics/methods , Proteome/metabolism , Cell Line, Tumor , Heat-Shock Response , Tandem Mass Spectrometry , Chromatography, Liquid , Cell Differentiation , Proteotoxic StressABSTRACT
Osteopetrosis is a rare hereditary illness generated by failure in osteoclasts resulting in elevated bone densities. Patients with osteopetrosis possess several complications, like dental caries, earlier teeth loss, delayed eruption, malformed crowns and roots, and lamina dura thickening. Since deficiency of carbonic anhydrase II is a major cause behind osteopetrosis, carbonic anhydrase II activators have a large number of applications in osteopetrosis treatment. There is a lack of a comprehensive review on osteopetrosis, pathogenesis of dental abnormalities, and the role of carbonic anhydrase II activators in osteopetrosis treatment. To address this research gap, the authros perfomed a comprehensive review on osteopetrosis and its types, pathogenesis of dental abnormalities, and the role of carbonic anhydrase II activators in osteopetrosis treatment. A brief introduction to the pathogenesis of dental abnormalities and regeneration is provided in this survey. A discussion of types of osteopetrosis depending on genetic inheritance, such as autosomal dominant, autosomal recessive, and X-linked inheritance osteopetrosis, is presented in this survey. The paper also focuses on the importance of carbonic anhydrase II activators as a potential drug therapy for dental osteopetrosis. In addition, a brief note on the role of azole and fluconazole in treating osteopetrosis is given. Finally, future directions involving gene therapy for dental osteopetrosis are described.
ABSTRACT
BACKGROUND: There is accumulating evidence that propranolol, an antagonist of beta-1 and beta-2 adrenoreceptors, extends survival of patients with prostate cancer; yet it is not known whether propranolol inhibits beta-adrenergic signaling in prostate cancer cells, or systemic effects of propranolol play the leading role in slowing down cancer progression. Recently initiated clinical studies offer a possibility to test whether administration of propranolol inhibits signaling pathways in prostate tumors, however, there is limited information on the dynamics of signaling pathways activated downstream of beta-2 adrenoreceptors in prostate cancer cells and on the inactivation of these pathways upon propranolol administration. METHODS: Western blot analysis was used to test the effects of epinephrine and propranolol on activation of protein kinase (PKA) signaling in mouse prostates and PKA, extracellular signal-regulated kinase (ERK), and protein kinase B/AKT (AKT) signaling in prostate cancer cell lines. RESULTS: In prostate cancer cell lines epinephrine induced robust phosphorylation of PKA substrates pS133CREB and pS157VASP that was evident 2 min after treatments and lasted for 3-6 h. Epinephrine induced phosphorylation of AKT in PTEN-positive 22Rv1 cells, whereas changes of constitutive AKT phosphorylation were minimal in PTEN-negative PC3, C42, and LNCaP cells. A modest short-term increase of pERK in response to epinephrine was observed in all tested cell lines. Incubation of prostate cancer cells with 10-fold molar excess of propranolol for 30 min inhibited all downstream pathways activated by epinephrine. Subjecting mice to immobilization stress induced phosphorylation of S133CREB, whereas injection of propranolol at 1.5 mg/kg prevented the stress-induced phosphorylation. CONCLUSIONS: The analysis of pS133CREB and pS157VASP allows measuring activation of PKA signaling downstream of beta-2 adrenoreceptors. Presented results on the ratio of propranolol/epinephrine and the time needed to inhibit signaling downstream of beta-2 adrenoreceptors will help to design clinical studies that examine the effects of propranolol on prostate tumors.
Subject(s)
Propranolol , Prostatic Neoplasms , Humans , Male , Animals , Mice , Propranolol/pharmacology , Propranolol/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Phosphorylation , Epinephrine/pharmacology , Epinephrine/metabolismABSTRACT
Background: Sex and gender have a large impact in human health and disease prediction. According to genomic/genetics, men differ from women by a limited number of genes in Y chromosome, while the phenotypes of the 2 sexes differ markedly. Methods: In this study, serum samples from six healthy Bahraini men and women were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Bioinformatics databases and tools were used for protein/peptide (PPs) identification and gene localization. The PPs that differed significantly (p < 0.05, ANOVA) in abundance with a fold change (FC) of ≥1.5 were identified. Results: Revealed 20 PPs, 11 were upregulated in women with very high FC (up to 8 folds), and 9 were upregulated in men but with much lower FC. The PPs are encoded by genes located in autosomal chromosomes, indicative of sex-biased gene expression. The only PP related to sex, the sex hormone-binding globulin, was upregulated in women. The remaining PPs were involved in immunity, lipid metabolism, gene expression, connective tissue, and others, with some overlap in function. Conclusions: The upregulated PPs in men or women are mostly reflecting the functon or risk/protection provided by the PPs to the specific sex, e.g., Apo-B100 of LDLC. Finally, the basis of sex-biased gene expression and sex phenotypic differences needs further investigation.
Subject(s)
Tandem Mass Spectrometry , Y Chromosome , Male , Humans , Female , Chromatography, Liquid , Healthy Volunteers , GenomeABSTRACT
Osteopetrosis is a rare inherited disease caused by osteoclast failure, resulting in increasing bone density in humans. Patients with osteopetrosis possess several dental and cranial complications. Since carbonic anhydrase II (CA-II) deficiency is a major cause of osteopetrosis, CA-II activators might be an attractive potential treatment option for osteopetrosis patients. We conducted comprehensive label-free quantitative proteomics analysis on Fluconazole-treated Dental Pulp Mesenchymal Stem/Stromal Cells from CA-II-Deficient Osteopetrosis Patients. We identified 251 distinct differentially expressed proteins between healthy subjects, as well as untreated and azole-treated derived cells from osteopetrosis patients. Twenty-six (26) of these proteins were closely associated with osteogenesis and osteopetrosis disease. Among them are ATP1A2, CPOX, Ap2 alpha, RAP1B and some members of the RAB protein family. Others include AnnexinA1, 5, PYGL, OSTF1 and PGAM4, all interacting with OSTM1 in the catalytic reactions of HCO3 and the Cl- channel via CAII regulation. In addition, the pro-inflammatory/osteoclast regulatory proteins RACK1, MTSE, STING1, S100A13, ECE1 and TRIM10 are involved. We have identified proteins involved in osteogenic and immune metabolic pathways, including ERK 1/2, phosphatase and ATPase, which opens the door for some CA activators to be used as an alternative drug therapy for osteopetrosis patients. These findings propose that fluconazole might be a potential treatment agent for CAII- deficient OP patients. Altogether, our findings provide a basis for further work to elucidate the clinical utility of azole, a CA activator, as a therapeutic for OP.
Subject(s)
Mesenchymal Stem Cells , Osteopetrosis , Humans , Fluconazole/pharmacology , Fluconazole/therapeutic use , Osteogenesis , Dental Pulp , Osteopetrosis/drug therapy , Azoles , Metabolic Networks and Pathways , rap GTP-Binding ProteinsABSTRACT
Osteopetrosis is a hereditary disorder characterized by sclerotic, thick, weak, and brittle bone. The biological behavior of mesenchymal cells obtained from osteopetrosis patients has not been well-studied. Isolated mesenchymal stem/stromal cells from dental pulp (DP-MSSCs) of recently extracted deciduous teeth from osteopetrosis (OP) patients and healthy controls (HCs) were compared. We evaluated whether the dental pulp of OP patients has a population of MSSCs with similar multilineage differentiation capability to DP-MSSCs of healthy subjects. Stem/progenitor cells were characterized using immunohistochemistry, flow cytometry, and proteomics. Our DP-MSSCs were strongly positive for CD44, CD73, CD105, and CD90. DP-MSSCs obtained from HC subjects and OP patients showed similar patterns of proliferation and differentiation as well as gene expression. Proteomic analysis identified 1499 unique proteins with 94.3% similarity in global protein fingerprints of HCs and OP patients. Interestingly, we observed subtle differences in expressed proteins of osteopetrosis disease-related in pathways, including MAPK, ERK 1/2, PI3K, and integrin, rather than in the stem cell signaling network. Our findings of similar protein expression signatures in DP-MSSCs of HC and OP patients are of paramount interest, and further in vivo validation study is needed. There is the possibility that OP patients could have their exfoliating deciduous teeth banked for future use in regenerative dentistry.
Subject(s)
Acidosis, Renal Tubular/metabolism , Acidosis, Renal Tubular/pathology , Biomarkers/metabolism , Carbonic Anhydrases/deficiency , Dental Pulp/metabolism , Mesenchymal Stem Cells/metabolism , Osteopetrosis/metabolism , Osteopetrosis/pathology , Proteome/analysis , Urea Cycle Disorders, Inborn/metabolism , Urea Cycle Disorders, Inborn/pathology , Adolescent , Biomarkers/analysis , Carbonic Anhydrases/metabolism , Case-Control Studies , Cell Differentiation , Cell Proliferation , Child , Dental Pulp/cytology , Female , Humans , Male , Mesenchymal Stem Cells/cytologyABSTRACT
Prolonged dexamethasone (Dex) administration leads to serious adverse and decrease brain and heart size, muscular atrophy, hemorrhagic liver, and presence of kidney cysts. Herein, we used an untargeted proteomic approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneous identification of changes in proteomes of the major organs in Sprague-Dawley (SD rats post Dex treatment. The comparative and quantitative proteomic analysis of the brain, heart, muscle, liver, and kidney tissues revealed differential expression of proteins (n = 190, 193, 39, 230, and 53, respectively) between Dex-treated and control rats. Functional network analysis using ingenuity pathway analysis (IPA revealed significant differences in regulation of metabolic pathways within the morphologically changed organs that related to: (i) brain-cell morphology, nervous system development, and function and neurological disease; (ii) heart-cellular development, cellular function and maintenance, connective tissue development and function; (iii) skeletal muscle-nucleic acid metabolism, and small molecule biochemical pathways; (iv) liver-lipid metabolism, small molecular biochemistry, and nucleic acid metabolism; and (v) kidney-drug metabolism, organism injury and abnormalities, and renal damage. Our study provides a comprehensive description of the organ-specific proteomic profilesand differentially altered biochemical pathways, after prolonged Dex treatement to understand the molecular basis for development of side effects.
Subject(s)
Dexamethasone/pharmacology , Proteome/drug effects , Proteomics , Animals , Chromatography, Liquid , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Ontology , Gene Regulatory Networks , Male , Organ Specificity , Proteomics/methods , Rats , Signal Transduction , Tandem Mass SpectrometryABSTRACT
Abnormal ocular motility is a common clinical feature in congenital cranial dysinnervation disorder (CCDD). To date, eight genes related to neuronal development have been associated with different CCDD phenotypes. By using linkage analysis, candidate gene screening, and exome sequencing, we identified three mutations in collagen, type XXV, alpha 1 (COL25A1) in individuals with autosomal-recessive inheritance of CCDD ophthalmic phenotypes. These mutations affected either stability or levels of the protein. We further detected altered levels of sAPP (neuronal protein involved in axon guidance and synaptogenesis) and TUBB3 (encoded by TUBB3, which is mutated in CFEOM3) as a result of null mutations in COL25A1. Our data suggest that lack of COL25A1 might interfere with molecular pathways involved in oculomotor neuron development, leading to CCDD phenotypes.
Subject(s)
Genes, Recessive , Non-Fibrillar Collagens/genetics , Ocular Motility Disorders/genetics , Oculomotor Nerve Diseases/genetics , Child , Exome , Female , Genetic Linkage , Humans , Male , Mutation , Neurogenesis/genetics , Non-Fibrillar Collagens/metabolism , Phenotype , Tubulin/genetics , Tubulin/metabolismABSTRACT
BACKGROUND: There have been several attempts to standardize the definition and increase reproducibility in classifying lupus nephritis (LN). The last was made by the International Society of Nephrology and Renal Pathology Society in 2003 where the introduction of Class IV subcategories (global and segmental) was introduced. METHODS: We investigated whether this subdivision is important using a proteomics approach. All patients with renal biopsies along with their clinical outcome of LN were identified and regrouped according to the above 2003 classifications. Fresh-frozen renal biopsies of Class IV LN (global and segmental), antineutrophil cytoplasmic antibody-associated vasculitis and normal tissue were analyzed using two-dimensional gel electrophoresis (2-DE) and mass spectrometry. Differentially expressed proteins were identified and subjected to principal component analysis (PCA), and post hoc analysis for the four sample groups. RESULTS: PCA of 72 differentially expressed spots separated Class IV global and Class IV segmental from both normal and antineutrophil cytoplasmic antibody-associated vasculitis (ANCA). The 28 identified proteins were used in a post hoc analysis, and showed that IV-global and IV-segmental differ in several protein expression when compared with normal and ANCA. To confirm the proteomic results, a total of 78 patients (50 Class IV-Global and 28 Class IV-Segmental) were re-classified according to 2003 classification. There was no difference in therapy between the groups. The renal survival and patient survivals were similar in both groups. CONCLUSIONS: There is no strong evidence to support a different outcome between the two subcategories of Class-IV LN and, they should thus be treated the same until further studies indicate otherwise.
Subject(s)
Biomarkers/metabolism , Lupus Nephritis/metabolism , Proteome/metabolism , Proteomics/methods , Adult , Electrophoresis, Gel, Two-Dimensional , Female , Follow-Up Studies , Humans , Lupus Nephritis/classification , Lupus Nephritis/pathology , Male , Principal Component Analysis , Prognosis , Recurrence , Retrospective Studies , Spectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationABSTRACT
BACKGROUND: BRCA1 promoter methylation has been detected in DNA from peripheral blood cells of both breast cancer patients and cancer-free females. However, the pathological significance of this epigenetic change in white blood cells (WBC) remains an open question. In this study, we hypothesized that if constitutional BRCA1 methylation reflects an elevated risk for developing breast cancer (BC), WBC that harbor methylated BRCA1 in both cancer-free females and BC patients should exhibit similar molecular changes. METHODS: BRCA1 promoter methylation was examined by methylation-specific PCR in WBC from 155 breast cancer patients and 143 cancer-free females. The Human Breast Cancer EpiTect Methyl II Signature PCR Array and The Human Breast Cancer RT2 Profiler™ PCR Array were used to study the methylation status and the expression profile of several breast cancer-related genes, respectively. In addition, we used label-free MS-based technique to study protein expression in plasma. RESULTS: We have shown that 14.2% of BC patients and 9.1% of cancer-free females (carriers) harbored methylated BRCA1 promoter in their WBC. Interestingly, 66.7% of patients harbored methylated BRCA1 promoter in both WBC and tumors. Importantly, we have shown the presence of epigenetic changes in 9 other BC-related genes in WBC of both patients and carriers. Additionally, BRCA1 and 15 other important cancer -related genes were found to be differentially expressed in WBC from patients and carriers as compared to controls. Furthermore, we have shown that the carriers exhibited a unique plasma protein pattern different from those of BC patients and controls, with 10 proteins similarly differentially expressed in patients and carriers as compared to controls. CONCLUSIONS: The present results suggest the presence of a strong link between aberrant methylation of the BRCA1 promoter in WBC and breast cancer -related molecular changes, which indicate the potential predisposition of the carriers for developing breast cancer. This informs the potential use of the aberrant methylation of BRCA1 promoter in WBC as a powerful non-invasive molecular marker for detecting predisposed individuals at a very early age.
Subject(s)
BRCA1 Protein/genetics , DNA Methylation , Leukocytes/metabolism , Promoter Regions, Genetic , Transcriptome , Adolescent , Adult , Aged , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cluster Analysis , Epigenesis, Genetic , Female , Gene Expression Profiling , Heterozygote , Humans , Mammary Glands, Human/metabolism , Middle Aged , Neoplasm Grading , Young AdultABSTRACT
BACKGROUND: There are a number of dietary components that may prove useful in the prevention and treatment of cancer. In some cultures, fenugreek seeds are used to treat cancer. The current study focuses on the anticancer properties and proteomic profiles of fenugreek seeds, and is prompted by the clinical profile of a case of primary CNS T cell lymphoma that responded to fenugreek treatment and resulted in tumor regression. METHOD: Various normal and cancer cell lines were exposed to fenugreek extract at differing concentrations (100 µg/ml, 200 µg/ml and 300 µg/ml) and at different time points (0, 24, 48, 72 and 96 hrs). Protein fingerprints of fenugreek grain/seed types, obtained from four different geographical regions, were analyzed by proteomic expression profiles. RESULTS: We observed selective cytotoxic effects of fenugreek extract in vitro to a panel of cancer cell lines, including T-cell lymphoma. Additionally, the cluster analysis of proteomics data showed that the protein profile of the particular fenugreek used by the patient is significantly different from three other regional subtypes of fenugreek extract. CONCLUSION: The in vitro effect of fenugreek as a substance with significant cytotoxicity to cancer cells points to the potential usefulness of fenugreek in the prevention and treatment of cancer.
Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Neoplasms/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , Proteome , Seeds/metabolism , Trigonella/metabolism , Humans , In Vitro Techniques , Lymphoma, T-Cell/drug therapy , MCF-7 Cells , Plant Proteins/metabolism , Proteomics , Species Specificity , Trigonella/classificationABSTRACT
Periodontal disease is characterized by inflammation and bone loss. Central to its pathogenesis is the dysregulated inflammatory response, complicating regenerative therapies. Mesenchymal stem cells (MSCs) hold significant promise in tissue repair and regeneration. This study investigated the effects of specialized pro-resolving mediators (SPMs), Resolvin E1 (RvE1) and Maresin 1 (MaR1), on the osteogenic differentiation of human bone marrow-derived MSCs under inflammatory conditions. The stem cells were treated with SPMs in the presence of lipopolysaccharide (LPS) to simulate an inflammatory environment. Osteogenic differentiation was assessed through alkaline phosphatase activity and alizarin red staining. Proteomic analysis was conducted to characterize the protein expression profile changes, focusing on proteins related to osteogenesis and osteoclastogenesis. Treatment with RvE1 and MaR1, both individually and in combination, significantly enhanced calcified deposit formation. Proteomic analysis revealed the differential expression of proteins associated with osteogenesis and osteoclastogenesis, highlighting the modulatory impact of SPMs on bone metabolism. RvE1 and MaR1 promote osteogenic differentiation of hBMMSCs in an inflammatory environment, with their combined application yielding synergistic effects. This study provides insights into the therapeutic potential of SPMs in enhancing bone regeneration, suggesting a promising avenue for developing regenerative therapies for periodontal disease and other conditions characterized by inflammation-induced bone loss.
Subject(s)
Cell Differentiation , Docosahexaenoic Acids , Eicosapentaenoic Acid , Inflammation , Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/drug effects , Humans , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/analogs & derivatives , Docosahexaenoic Acids/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Inflammation/pathology , Proteomics , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/cytology , Lipopolysaccharides/pharmacologyABSTRACT
The integration of microfabrication and microfluidics techniques into cell culture technology has significantly transformed cell culture conditions, scaffold architecture, and tissue biofabrication. These tools offer precise control over cell positioning and enable high-resolution analysis and testing. Culturing cells in 3D systems, such as spheroids and organoids, enables recapitulating the interaction between cells and the extracellular matrix, thereby allowing the creation of human-based biomimetic tissue models that are well-suited for pre-clinical drug screening. Here, we demonstrate an innovative microfluidic device for the formation, culture, and testing of hepatocyte spheroids, which comprises a large array of patterned microwells for hosting hepatic spheroid culture in a reproducible and organized format in a dynamic fluidic environment. The device allows maintaining and characterizing different spheroid sizes as well as exposing to various drugs in parallel enabling high-throughput experimentation. These liver spheroids exhibit physiologically relevant hepatic functionality, as evidenced by their ability to produce albumin and urea at levels comparable to in vivo conditions and the capability to distinguish the toxic effects of selected drugs. This highlights the effectiveness of the microenvironment provided by the chip in maintaining the functionality of hepatocyte spheroids. These data support the notion that the liver-spheroid chip provides a favorable microenvironment for the maintenance of hepatocyte spheroid functionality.
ABSTRACT
BACKGROUND: Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. RESULTS: Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers - CD24, CD108 and CD40. CONCLUSION: We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers.
Subject(s)
Adipose Tissue/metabolism , Bone Marrow Cells/metabolism , Fibroblasts/metabolism , Foreskin/metabolism , Gene Expression , Mammary Glands, Human/metabolism , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Antigens, CD/genetics , Antigens, CD/metabolism , Biomarkers/metabolism , Bone Marrow Cells/cytology , CD24 Antigen/genetics , CD24 Antigen/metabolism , CD40 Antigens/genetics , CD40 Antigens/metabolism , Cell Differentiation , Cells, Cultured , Female , Fibroblasts/cytology , Foreskin/cytology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression Profiling , Humans , Immunophenotyping , Male , Mammary Glands, Human/cytology , Mesenchymal Stem Cells/cytology , Semaphorins/genetics , Semaphorins/metabolismABSTRACT
An interconnection between tissue inflammation and regeneration has been established through the regulation of defense and repair mechanisms within diseased dental tissue triggered by the release of immune-resolvent mediators. To better our understanding of the role of specific pro-resolving mediators (SPMs) in inflamed human bone marrow-derived mesenchymal stem cells (hBMMSCs), we studied the effects of Resolvin E1 (RvE1) and Maresin 1 (MaR1) in lipopoly-saccharide (LPS) stimulated hBMMSCs. The hBMMSCs were divided into five different groups, each of which was treated with or without SPMs. Group-1: negative control (no LPS stimulation), Group-2: positive control (LPS-stimulated), Group-3: RvE1 100 nM + 1 µg/mL LPS, Group-4: MaR1 100 nM + 1 µg/mL LPS, and Group-5: RvE1 100 nM + MaR1100 nM + 1 µg/mL LPS. Cell proliferation, apoptosis, migration, colony formation, Western blotting, cytokine array, and LC/MS analysis were all performed on each group to determine the impact of SPMs on inflammatory stem cells. According to our data, RvE1 plus MaR1 effectively reduced inflammation in hBMMSCs. In particular, IL-4, 1L-10, and TGF-ß1 activation and downregulation of RANKL, TNF-α, and IFN-γ compared to groups receiving single SPM were shown to be significantly different (Group 3 and 4). In addition, the LC/MS analysis revealed the differentially regulated peptide's role in immunological pathways that define the cellular state against inflammation. Inflamed hBMMSCs treated with a combination of Resolvin E1 (RvE1) and Maresin 1 (MaR1) promoted the highest inflammatory resolution compared to the other groups; this finding suggests a potential new approach of treating bacterially induced dental infections.
Subject(s)
Eicosanoids , Mesenchymal Stem Cells , Humans , Inflammation/metabolism , Cytokines , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mesenchymal Stem Cells/metabolismABSTRACT
BACKGROUND: Human immunodeficiency virus-1 (HIV-1) exploits human host factors to complete its life cycle. Hence, discovery of HIV-regulated host proteins markers would better our understanding of the virus life-cycle and its contribution to pathogenesis and discovery of objective diagnostic and prognostic molecules. METHODS: We conducted holistic total proteomics analysis of three closely related study populations including patients with HIV type-1 (HIV-1) and HIV type-2 (HIV-2) as well as HIV-1 elite controllers (HIV-1-EC). Peripheral blood plasma (PBP) samples were subjected to label-free quantitative liquid-chromatography tandem mass-spectrometry (LC-MS/MS). RESULTS: Over 314 unique PBP protein species were identified of which 100 (approx. 32%) were significantly differentially expressed (≥2 to ∞ - fold-change; pâ¯<â¯0.05) between the three sample cohorts. Of the 100 proteins, 91 were significantly changed between pairs of HIV-1 versus HIV-1-EC, while 83 of the 100 proteins differed significantly between HIV-2 and HIV-1-EC. Interestingly, 76 proteins (87.5%) overlap between the two data sets indicating that majority of these proteins share similar expression changes between HIV-1 and HIV-2 sample groups. Two of the identified proteins, XRCC5 and PSME1, were implicated in the early phase of the pathway network for HIV life cycle, while others were involved in infectious disease and disease of signal transduction. Among them were MAP2K1, RPL23A, RPS3, CALR, PRDX1, SOD2, LMNB1, PHB, and FGB. Despite the high degree of similarity in protein profiles of HIV-1 and HIV-2, six proteins differed significantly including ETFB, PHB2, S100A9, LMO2, PPP3R1 and Vif, a fragment of virion infectivity factor of HIV-1. Additionally, 15 proteins were uniquely expressed, and one of them (LSP1) is present only in HIV-1-EC but absent in HIV1 and HIV-2 and vice versa for the rest 14 proteins. CONCLUSIONS: Altogether, we have identified HIV-specific/related protein expression changes that might potentially be capable of early diagnosis and prognosis of HIV diseases and other related infectious diseases.
Subject(s)
HIV Infections , HIV-1 , Chromatography, Liquid , Humans , Prohibitins , Proteomics , Tandem Mass SpectrometryABSTRACT
PURPOSE: This study aimed to understand the pathophysiology of host responses to infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/(COVID-19) and Middle East respiratory syndrome coronavirus (MERS-CoV) and to identify proteins for patient stratification with different grades of illness severity. PATIENTS AND METHODS: Peripheral blood samples from 43 patients with different grades of COVID-19, 7 MERS-CoV patients admitted to the ICU, and 10 healthy subjects were analyzed using label-free quantitative liquid chromatography-mass spectrometry (LC-MS). RESULTS: We identified 193 and 91 proteins that differed significantly between COVID-19 and MERS-CoV sample groups, respectively, and 49 overlapped between datasets. Only 10 proteins are diagnostic of asymptomatic cases, 12 are prognostic of recovery from severe illness, and 28 are prognostic of a fatal outcome of COVID-19. These proteins are implicated in virus-specific/related signaling networks. Notable among the top canonical pathways are humoral immunity, inflammation, acute-phase response signaling, liver X receptor/retinoid X receptor (LXR/RXR) activation, coagulation, and the complement system. Furthermore, we confirmed positive viral shedding in 11.76% of 51 additional peripheral blood samples, indicating that caution should be taken to avoid the possible risk of transfusion of infected blood products. CONCLUSION: We identified COVID-19 and MERS-CoV protein panels that have potential as biomarkers and might assist in the prognosis of SARS-CoV-2 infection. The identified markers further our understanding of COVID-19 disease pathophysiology and may have prognostic or therapeutic potential in predicting or managing host cell responses to human COVID-19 and MERS-CoV infections.
ABSTRACT
Autosomal recessive mutations in G6PC3 cause isolated and syndromic congenital neutropenia which includes congenital heart disease and atypical inflammatory bowel disease (IBD). In a highly consanguineous pedigree with novel mutations in G6PC3 and MPL, we performed comprehensive multi-omics analyses. Structural analysis of variant G6PC3 and MPL proteins suggests a damaging effect. A distinct molecular cytokine profile (cytokinome) in the affected proband with IBD was detected. Liquid chromatography-mass spectrometry-based proteomics analysis of the G6PC3-deficient plasma samples identified 460 distinct proteins including 75 upregulated and 73 downregulated proteins. Specifically, the transcription factor GATA4 and LST1 were downregulated while platelet factor 4 (PF4) was upregulated. GATA4 and PF4 have been linked to congenital heart disease and IBD respectively, while LST1 may have perturbed a variety of essential cell functions as it is required for normal cell-cell communication. Together, these studies provide potentially novel insights into the pathogenesis of syndromic congenital G6PC3 deficiency.
ABSTRACT
Medulloblastoma is an aggressive primary brain tumor that arises in the cerebellum of children and young adults. The Sonic Hedgehog (Shh) signaling pathway that plays important roles in the pathology of this aggressive disease is a promising therapeutic target. In the present report we have shown that curcumin has cytotoxic effects on medulloblastoma cells. Curcumin suppressed also cell proliferation and triggered cell-cycle arrest at G(2)/M phase. Moreover, curcumin inhibited the Shh-Gli1 signaling pathway by downregulating the Shh protein and its most important downstream targets GLI1 and PTCH1. Furthermore, curcumin reduced the levels of beta-catenin, the activate/phosphorylated form of Akt and NF-kappaB, which led to downregulating the three common key effectors, namely C-myc, N-myc, and Cyclin D1. Consequently, apoptosis was triggered by curcumin through the mitochondrial pathway via downregulation of Bcl-2, a downstream anti-apoptotic effector of the Shh signaling. Importantly, the resistant cells that exhibited no decrease in the levels of Shh and Bcl-2, were sensitized to curcumin by the addition of the Shh antagonist, cyclopamine. Furthermore, we have shown that curcumin enhances the killing efficiency of nontoxic doses of cisplatin and gamma-rays. In addition, we present clear evidence that piperine, an enhancer of curcumin bioavailability in humans, potentiates the apoptotic effect of curcumin against medulloblastoma cells. This effect was mediated through strong downregulation of Bcl-2. These results indicate that curcumin, a natural nontoxic compound, represents great promise as Shh-targeted therapy for medulloblastomas.
Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cerebellar Neoplasms/pathology , Curcumin/pharmacology , Hedgehog Proteins/antagonists & inhibitors , Medulloblastoma/pathology , Signal Transduction/drug effects , Apoptosis/radiation effects , Blotting, Western , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cerebellar Neoplasms/metabolism , Drug Resistance, Neoplasm , Flow Cytometry , Gamma Rays , Humans , Immunoblotting , Immunoenzyme Techniques , Medulloblastoma/metabolism , Mitochondria/drug effects , Mitochondria/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Veratrum Alkaloids/pharmacologyABSTRACT
Restoration of normal DNA promoter methylation and expression states of cancerrelated genes may be an option for the prevention as well as the treatment of several types of cancer. Constitutional promoter methylation of BRCA1 DNA repair associated (BRCA1) gene is linked with a high risk of developing breast and ovarian cancer. Furthermore, hypomethylation of the protooncogene γ synuclein (SNCG) is associated with the metastasis of breast and ovarian cancer and reduced diseasefree survival (DFS). In the present study, we evaluated the potential of curcumin to reexpress hypermethylated BRCA1 and to suppress hypomethylated SNCG in triplenegative breast cancer (TNBC) cell line HCC38, the estrogen receptornegative/progesterone receptornegative (ER/PR) cell line UACC3199, and the ER+/PR+ cell line T47D. The cells were treated with 5 and 10 µM curcumin for 6 days and with 5aza2'deoxycytidine (5'azaCdR) for 48 h. Methylationspecific PCR and bisulfite pyrosequencing assays were used to assess DNA promoter methylation while gene expression levels were analyzed using quantitative realtime PCR and immunoblotting. We found that curcumin treatment restored BRCA1 gene expression by reducing the DNA promoter methylation level in HCC38 and UACC3199 cells and that it suppressed the expression of SNCG by inducing DNA promoter methylation in T47D cells. Notably, 5'azaCdR restored BRCA1 gene expression only in UACC3199, and not in HCC38 cells. Curcumininduced hypomethylation of the BRCA1 promoter appears to be realized through the upregulation of the teneleven translocation 1 (TET1) gene, whereas curcumininduced hypermethylation of SNCG may be realized through the upregulation of the DNA methyltransferase 3 (DNMT3) and the downregulation of TET1. Notably, miR29b was found to be reversely expressed compared to TET1 in curcumin and 5'azaCdRtreated cells, suggesting its involvement in the regulation of TET1. Overall, our results indicate that curcumin has an intrinsic dual function on DNA promoter methylation. We believe that curcumin may be considered a promising therapeutic option for treating TNBC patients in addition to preventing breast and ovarian cancer, particularly in cancerfree females harboring methylated BRCA1.