Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Genes Cells ; 28(8): 563-572, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37170756

ABSTRACT

Methotrexate (MTX) is an anti-metabolite that has been used for the treatment of patients of acute lymphocytic leukemia or non-Hodgikin lymphoma for decades. In some cases, MTX-treated patients suffer from neurological side effects, including seizures and cognitive dysfunctions. While most patients are at developmental stages, information of the mechanisms of the side effects of MTX treatment on the developing neurons has been limited. Neurons develop in five steps in the human brain: neurogenesis, polarity formation, dendrite and axon development, synapse formation, and neuronal death. Except for neurogenesis, these processes can be recapitulated in the primary culture system of cortical neurons. Using primary cultured cortical neurons, we studied the impact of MTX treatment on dendrite development, synapse formation, and neuronal death in the present report. MTX treatment impaired neuronal survival, dendrite development, and synapse formation. Interestingly, half maximal effective concentrations (EC50 s) of MTX for all three processes are at the similar range and lower than the MTX concentration in the cerebrospinal fluid in treated patients. Our results provide possible mechanisms of neurological side effects in treated patients.


Subject(s)
Methotrexate , Neurons , Humans , Methotrexate/pharmacology , Methotrexate/therapeutic use , Neurons/physiology , Neurogenesis , Dendrites , Synapses
2.
Biochem Biophys Res Commun ; 610: 85-91, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35453040

ABSTRACT

The primary cilium is a specialized microtubule-based sensory organelle that extends from the cell body of nearly all cell types. Neuronal primary cilia, which have their own unique signaling repertoire, are crucial for neuronal integrity and the maintenance of neuronal connectivity throughout adulthood. Dysfunction of cilia structure and ciliary signaling is associated with a variety of genetic syndromes, termed ciliopathies. One of the characteristic features of human ciliopathies is impairment of memory and cognition, which is also observed in Alzheimer's disease (AD). Amyloid ß peptide (Aß) is produced through the proteolytic processing of amyloid precursor protein (APP), and Aß accumulation in the brain is proposed to be an early toxic event in the pathogenesis of AD. To evaluate the effect of increased Aß level on primary cilia, we assessed ciliary dynamics in hippocampal neurons in an APP knock-in AD model (AppNL-G-F mice) compared to that in wild-type mice. Neuronal cilia length in the CA1, CA3, and dentate gyrus (DG) of wild-type mice increased significantly with age. In AppNL-G-F mice, such elongation was detected in the DG but not in the CA1 and CA3, where more Aß accumulation was observed. We further demonstrated that Aß1-42 treatment decreased cilia length both in hTERT-RPE1 cells and dissociated rat hippocampal neurons. There is growing evidence that reduced cilia length is associated with perturbations of synaptic connectivity and dendrite complexity. Thus, our observations raise the important possibility that structural alterations in neuronal cilia might have a role in AD development.


Subject(s)
Alzheimer Disease , Ciliopathies , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats
3.
Eur J Neurosci ; 53(11): 3548-3560, 2021 06.
Article in English | MEDLINE | ID: mdl-33851450

ABSTRACT

Effective drugs that can cure cognitive impairments remain elusive. Because synaptic dysfunction has been correlated with cognitive impairments, drug development to target synaptic dysfunction is important. Recently, natural compounds and crude drugs have emerged as potential therapeutic agents for cognitive disorders. However, their effects on synaptic function remain unclear, because of lack of evaluation system with high reproducibility. We have recently developed highly reproducible in vitro high-content imaging analysis system for evaluation of synaptic function using drebrin as a marker for synaptic states. Therefore, we aimed to examine the direct effects of well-known natural compounds and crude drugs on synaptic states using this system. Rat hippocampal neurons were treated using natural compounds (nobiletin, diosgenin and tenuifolin) and crude drugs (Uncaria Hook [UH], Bezoar Bovis [BB], Coptis Rhizome [CR], Phellodendron Bark [PB] and Polygala Root [PR]). Immunocytochemical analysis was performed, and dendrite lengths and drebrin cluster densities were automatically quantified. We found that diosgenin, tenuifolin, CR, PB and PR decreased drebrin cluster densities, and the effects of PB and PR were partially dependent on N-methyl-D-aspartic acid-type glutamate receptors (NMDARs). Nobiletin and UH did not show any effects, whereas low-dose BB treatment increased drebrin cluster densities. Our results showed that diosgenin, tenuifolin, BB, CR, PB and PR appeared to directly change synaptic states. Particularly, the NMDAR dependency of PB and PR appears to affect synaptic plasticity.


Subject(s)
Pharmaceutical Preparations , Receptors, N-Methyl-D-Aspartate , Animals , Rats , Hippocampus/metabolism , Neuropeptides , Receptors, N-Methyl-D-Aspartate/metabolism , Reproducibility of Results , Synapses/metabolism
4.
Epilepsia ; 61(8): 1581-1594, 2020 08.
Article in English | MEDLINE | ID: mdl-32662890

ABSTRACT

OBJECTIVE: Drebrins are crucial for synaptic function and dendritic spine development, remodeling, and maintenance. In temporal lobe epilepsy (TLE) patients, a significant hippocampal synaptic reorganization occurs, and synaptic reorganization has been associated with hippocampal hyperexcitability. This study aimed to evaluate, in TLE patients, the hippocampal expression of drebrin using immunohistochemistry with DAS2 or M2F6 antibodies that recognize adult (drebrin A) or adult and embryonic (pan-drebrin) isoforms, respectively. METHODS: Hippocampal sections from drug-resistant TLE patients with hippocampal sclerosis (HS; TLE, n = 33), of whom 31 presented with type 1 HS and two with type 2 HS, and autopsy control cases (n = 20) were assayed by immunohistochemistry and evaluated for neuron density, and drebrin A and pan-drebrin expression. Double-labeling immunofluorescences were performed to localize drebrin A-positive spines in dendrites (MAP2), and to evaluate whether drebrin colocalizes with inhibitory (GAD65) and excitatory (VGlut1) presynaptic markers. RESULTS: Compared to controls, TLE patients had increased pan-drebrin in all hippocampal subfields and increased drebrin A-immunopositive area in all hippocampal subfields but CA1. Drebrin-positive spine density followed the same pattern as total drebrin quantification. Confocal microscopy indicated juxtaposition of drebrin-positive spines with VGlut1-positive puncta, but not with GAD65-positive puncta. Drebrin expression in the dentate gyrus of TLE cases was associated negatively with seizure frequency and positively with verbal memory. TLE patients with lower drebrin-immunopositive area in inner molecular layer (IML) than in outer molecular layer (OML) had a lower seizure frequency than those with higher or comparable drebrin-immunopositive area in IML compared with OML. SIGNIFICANCE: Our results suggest that changes in drebrin-positive spines and drebrin expression in the dentate gyrus of TLE patients are associated with lower seizure frequency, more preserved verbal memory, and a better postsurgical outcome.


Subject(s)
Drug Resistant Epilepsy/metabolism , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , Neuropeptides/metabolism , Adult , Aged , Aged, 80 and over , Anterior Temporal Lobectomy , CA1 Region, Hippocampal/metabolism , CA2 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/metabolism , Case-Control Studies , Dendrites/metabolism , Dendrites/pathology , Dentate Gyrus/metabolism , Drug Resistant Epilepsy/pathology , Drug Resistant Epilepsy/surgery , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/surgery , Female , Glutamate Decarboxylase/metabolism , Hippocampus/pathology , Hippocampus/surgery , Humans , Immunohistochemistry , Male , Microscopy, Confocal , Microtubule-Associated Proteins/metabolism , Middle Aged , Neuronal Plasticity , Sclerosis , Vesicular Glutamate Transport Protein 1/metabolism
5.
Proc Natl Acad Sci U S A ; 114(18): E3642-E3651, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28416666

ABSTRACT

Despite the wide administration of several effective vaccines, rotavirus (RV) remains the single most important etiological agent of severe diarrhea in infants and young children worldwide, with an annual mortality of over 200,000 people. RV attachment and internalization into target cells is mediated by its outer capsid protein VP4. To better understand the molecular details of RV entry, we performed tandem affinity purification coupled with high-resolution mass spectrometry to map the host proteins that interact with VP4. We identified an actin-binding protein, drebrin (DBN1), that coprecipitates and colocalizes with VP4 during RV infection. Importantly, blocking DBN1 function by siRNA silencing, CRISPR knockout (KO), or chemical inhibition significantly increased host cell susceptibility to RV infection. Dbn1 KO mice exhibited higher incidence of diarrhea and more viral antigen shedding in their stool samples compared with the wild-type littermates. In addition, we found that uptake of other dynamin-dependent cargos, including transferrin, cholera toxin, and multiple viruses, was also enhanced in DBN1-deficient cells. Inhibition of cortactin or dynamin-2 abrogated the increased virus entry observed in DBN1-deficient cells, suggesting that DBN1 suppresses dynamin-mediated endocytosis via interaction with cortactin. Our study unveiled an unexpected role of DBN1 in restricting the entry of RV and other viruses into host cells and more broadly to function as a crucial negative regulator of diverse dynamin-dependent endocytic pathways.


Subject(s)
Dynamins/metabolism , Endocytosis , Neuropeptides/metabolism , Rotavirus Infections/metabolism , Rotavirus/metabolism , Virus Internalization , Animals , Cricetinae , Dynamin II , Dynamins/genetics , HEK293 Cells , Humans , Mice , Mice, Knockout , Neuropeptides/genetics , Rotavirus/genetics , Rotavirus Infections/genetics
6.
Neurochem Res ; 44(7): 1736-1744, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31037609

ABSTRACT

Recent advances in human induced pluripotent stem cells (hiPSCs) offer new possibilities for biomedical research and clinical applications. Neurons differentiated from hiPSCs may be promising tools to develop novel treatment methods for various neurological diseases. However, the detailed process underlying functional maturation of hiPSC-derived neurons remains poorly understood. Here, we analyze the developmental architecture of hiPSC-derived cortical neurons, iCell GlutaNeurons, focusing on the primary cilium, a single sensory organelle that protrudes from the surface of most growth-arrested vertebrate cells. To characterize the neuronal cilia, cells were cultured for various periods and evaluated immunohistochemically by co-staining with antibodies against ciliary markers Arl13b and MAP2. Primary cilia were detected in neurons within days, and their prevalence and length increased with increasing days in culture. Treatment with the mood stabilizer lithium led to primary cilia length elongation, while treatment with the orexigenic neuropeptide melanin-concentrating hormone caused cilia length shortening in iCell GlutaNeurons. The present findings suggest that iCell GlutaNeurons develop neuronal primary cilia together with the signaling machinery for regulation of cilia length. Our approach to the primary cilium as a cellular antenna can be useful for both assessment of neuronal maturation and validation of pharmaceutical agents in hiPSC-derived neurons.


Subject(s)
Cilia/metabolism , Cilia/ultrastructure , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , ADP-Ribosylation Factors/immunology , Adenylyl Cyclases/immunology , Animals , Antibodies/immunology , Cell Line , Cilia/drug effects , Hippocampus/cytology , Hippocampus/drug effects , Humans , Hypothalamic Hormones/pharmacology , Immunohistochemistry , Lithium/pharmacology , Melanins/pharmacology , Microtubule-Associated Proteins/immunology , Neurogenesis/physiology , Neurons/drug effects , Pituitary Hormones/pharmacology , Rats, Wistar , Receptors, Somatostatin/immunology
7.
J Neurochem ; 146(2): 145-159, 2018 07.
Article in English | MEDLINE | ID: mdl-29675826

ABSTRACT

Drebrin is a major F-actin binding protein in dendritic spines that is critically involved in the regulation of dendritic spine morphogenesis, pathology, and plasticity. In this study, we aimed to identify a novel drebrin-binding protein involved in spine morphogenesis and synaptic plasticity. We confirmed the beta subunit of Ca2+ /calmodulin-dependent protein kinase II (CaMKIIß) as a drebrin-binding protein using a yeast two-hybrid system, and investigated the drebrin-CaMKIIß relationship in dendritic spines using rat hippocampal neurons. Drebrin knockdown resulted in diffuse localization of CaMKIIß in dendrites during the resting state, suggesting that drebrin is involved in the accumulation of CaMKIIß in dendritic spines. Fluorescence recovery after photobleaching analysis showed that drebrin knockdown increased the stable fraction of CaMKIIß, indicating the presence of drebrin-independent, more stable CaMKIIß. NMDA receptor activation also increased the stable fraction in parallel with drebrin exodus from dendritic spines. These findings suggest that CaMKIIß can be classified into distinct pools: CaMKIIß associated with drebrin, CaMKIIß associated with post-synaptic density (PSD), and CaMKIIß free from PSD and drebrin. CaMKIIß appears to be anchored to a protein complex composed of drebrin-binding F-actin during the resting state. NMDA receptor activation releases CaMKIIß from drebrin resulting in CaMKIIß association with PSD.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dendrites/ultrastructure , Dendritic Spines/metabolism , Neurons/cytology , Neuropeptides/metabolism , Animals , COS Cells , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cells, Cultured , Chlorocebus aethiops , Embryo, Mammalian , Excitatory Amino Acid Agonists/pharmacology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glutamic Acid/pharmacology , Glycine/pharmacology , Hippocampus/cytology , Neuropeptides/genetics , Photobleaching , Pregnancy , Protein Binding/drug effects , Protein Binding/genetics , Pseudopodia/drug effects , Pseudopodia/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Transgenic , Rats, Wistar
8.
Mol Cell Neurosci ; 84: 85-92, 2017 10.
Article in English | MEDLINE | ID: mdl-28161364

ABSTRACT

Dendritic spines form typical excitatory synapses in the brain and their shapes vary depending on synaptic inputs. It has been suggested that the morphological changes of dendritic spines play an important role in synaptic plasticity. Dendritic spines contain a high concentration of actin, which has a central role in supporting cell motility, and polymerization of actin filaments (F-actin) is most likely involved in spine shape changes. Drebrin is an actin-binding protein that forms stable F-actin and is highly accumulated within dendritic spines. Drebrin has two isoforms, embryonic-type drebrin E and adult-type drebrin A, that change during development from E to A. Inhibition of drebrin A expression results in a delay of synapse formation and inhibition of postsynaptic protein accumulation, suggesting that drebrin A has an important role in spine maturation. In mature synapses, glutamate stimulation induces rapid spine-head enlargement during long-term potentiation (LTP) formation. LTP stimulation induces Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors, which causes drebrin exodus from dendritic spines. Once drebrin exits from dendritic spine heads, the dynamic actin pool increases in spine heads to facilitate F-actin polymerization. To maintain enlarged spine heads, drebrin-decorated F-actin is thought to reform within the spine heads. Thus, drebrin plays a pivotal role in spine plasticity through regulation of F-actin.


Subject(s)
Dendrites/metabolism , Dendritic Spines/metabolism , Neuropeptides/metabolism , Synapses/metabolism , Animals , Humans , Neuronal Plasticity/physiology , Neurons/metabolism
9.
J Neurochem ; 141(6): 819-834, 2017 06.
Article in English | MEDLINE | ID: mdl-28199019

ABSTRACT

Drebrin is an actin-binding protein that changes the helical pitch of actin filaments (F-actin), and drebrin-decorated F-actin shows slow treadmilling and decreased rate of depolymerization. Moreover, the characteristic morphology of drebrin-decorated F-actin enables it to respond differently to the same signals from other actin cytoskeletons. Drebrin consists of two major isoforms, drebrin E and drebrin A. In the developing brain, drebrin E appears in migrating neurons and accumulates in the growth cones of axons and dendrites. Drebrin E-decorated F-actin links lamellipodium F-actin to microtubules in the growth cones. Then drebrin A appears at nascent synapses and drebrin A-decorated F-actin facilitates postsynaptic molecular assembly. In the adult brain, drebrin A-decorated F-actin is concentrated in the central region of dendritic spines. During long-term potentiation initiation, NMDA receptor-mediated Ca2+ influx induces the transient exodus of drebrin A-decorated F-actin via myosin II ATPase activation. Because of the unique physical characteristics of drebrin A-decorated F-actin, this exodus likely contributes to the facilitation of F-actin polymerization and spine enlargement. Additionally, drebrin reaccumulation in dendritic spines is observed after the exodus. In our drebrin exodus model of structure-based synaptic plasticity, reestablishment of drebrin A-decorated F-actin is necessary to keep the enlarged spine size during long-term potentiation maintenance. In this review, we introduce the genetic and biochemical properties of drebrin and the roles of drebrin in early stage of brain development, synaptic formation and synaptic plasticity. Further, we discuss the pathological relevance of drebrin loss in Alzheimer's disease. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".


Subject(s)
Dendrites/metabolism , Dendritic Spines/physiology , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Neurons/metabolism , Synapses/metabolism , Animals , Humans
10.
Eur J Neurosci ; 46(6): 2214-2228, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28833685

ABSTRACT

F-actin-binding protein drebrin has two major isoforms: drebrin A and drebrin E. Drebrin A is the major isoform in the adult brain and is highly concentrated in dendritic spines, regulating spine morphology and synaptic plasticity. Conversely, drebrin E is the major isoform in the embryonic brain and regulates neuronal morphological differentiation, but it is also expressed in neurogenic regions of the adult brain. The subventricular zone (SVZ) is one of the brain regions where adult neurogenesis occurs. Neuroblasts migrate to the olfactory bulb (OB) and integrate into existing neuronal networks, after which drebrin expression changes from E to A, suggesting that drebrin E plays a specific role in neuroblasts in the adult brain. Therefore, to understand the role of drebrin E in the adult brain, we immunohistochemically analyzed adult neurogenesis using drebrin-null-mutant (DXKO) mice. In DXKO mice, the number of neuroblasts and cell proliferation decreased, although cell death remained unchanged. These results suggest that drebrin E regulates cell proliferation in the adult SVZ. Surprisingly, the decreased number of neuroblasts in the SVZ did not result in less neurons in the OB. This was because the survival rate of newly generated neurons in the OB increased in DXKO mice. Additionally, when neuroblasts reached the OB, the change in the migratory pathway from tangential to radial was partly disturbed in DXKO mice. These results suggest that drebrin E is involved in a chain migration of neuroblasts.


Subject(s)
Cell Movement , Cell Proliferation , Lateral Ventricles/cytology , Neural Stem Cells/metabolism , Neurogenesis , Neuropeptides/metabolism , Animals , Lateral Ventricles/metabolism , Mice , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neuropeptides/genetics , Olfactory Bulb/cytology , Olfactory Bulb/metabolism
11.
Adv Exp Med Biol ; 1006: 3-22, 2017.
Article in English | MEDLINE | ID: mdl-28865011

ABSTRACT

Drebrin was first discovered by our group as "developmentally regulated brain protein" from the chicken optic tectum. Drebrin is an actin-binding protein, which is classified into two major isoforms produced by alternative splicing from a single DBN1 gene. The isoform predominantly expressed in the adult brain (drebrin A) is neuron specific, containing a neuron-specific sequence (Ins2) in the middle of the molecule. Drebrin A is highly concentrated in dendritic spines, and its accumulation level is regulated by synaptic activity. In contrast, drebrin E, which lacks Ins2, is found in widespread but not ubiquitous cell types in various tissues. The isoform conversion from drebrin E to drebrin A occurs in parallel with synaptogenesis. Drebrin decorating F-actin is found at the recipient side of cell-cell communication systems, such as gap junctions, adherens junctions, immunological synapses, and neuronal synapses. In addition, it is involved in the cellular mechanisms of cell migration, cell process formation, cancer metastasis, and spermatogenesis. Lack of drebrin leads to the dysfunction of cell-cell communication, resulting in aberrant migration of metastatic cancer cells, aberrant synaptic function in dementia, and rupture of endothelial integrity. Because drebrin forms a unique F-actin with a longer helical crossover, drebrin may create an F-actin platform for molecular assembly and play a pivotal role in intercellular communication.


Subject(s)
Microfilament Proteins/genetics , Neurons/metabolism , Neuropeptides/genetics , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Alternative Splicing/genetics , Animals , Brain/metabolism , Brain/physiology , Cell Communication/genetics , Humans , Microfilament Proteins/metabolism , Neuronal Plasticity/genetics , Neuropeptides/metabolism
12.
Adv Exp Med Biol ; 1006: 249-268, 2017.
Article in English | MEDLINE | ID: mdl-28865024

ABSTRACT

Drebrin is a major F-actin-binding protein in the brain. In the past two decades, many drebrin-binding proteins in addition to F-actin have been identified in several research fields including neuroscience, oncology, and immunology. Among the drebrin-binding proteins, there are various kinds of proteins including scaffold proteins, nuclear proteins, phosphatases, microtubule-binding proteins, G-actin-binding proteins, gap junction proteins, chemokine receptors, and cell-adhesion-related proteins. The interaction between drebrin and its binding partners seems to play important roles in higher brain functions, because drebrin is involved in the pathogenesis of some neurological diseases with cognitive defects. In this chapter, we will first review the interaction of Homer and spikar with drebrin, particularly focusing on spine morphogenesis and synaptic function. Homer contributes to spine morphogenesis by cooperating with shank and activated Cdc42 small GTPase, suggesting a novel signaling pathway comprising Homer, drebrin, shank, and Cdc42 for spine morphogenesis. Drebrin sequesters spikar in the cytoplasm and stabilizes it in dendritic spines, leading to spine formation. Finally, we will introduce some other drebrin-binding proteins including end-binding protein 3 (EB3), profilin, progranulin, and phosphatase and tensin homologue (PTEN). These proteins are involved in Alzheimer's disease and cancer. Therefore, further studies on drebrin and its binding proteins will be of great importance to elucidate the pathologies of various diseases and may contribute to their medical treatment and diagnostics development.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Morphogenesis/genetics , Neuropeptides/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Brain/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Homer Scaffolding Proteins/metabolism , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Neuronal Plasticity/genetics , Neuropeptides/genetics , Protein Binding/genetics , Spine/growth & development , Spine/metabolism , Synapses/metabolism , Synapses/pathology , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
13.
Adv Exp Med Biol ; 1006: 105-118, 2017.
Article in English | MEDLINE | ID: mdl-28865017

ABSTRACT

Developmental changes in the expression and localization of drebrin has been mainly analyzed in chick embryo and young rat by various anti-drebrin polyclonal and monoclonal antibodies. Immunoblot analysis demonstrated that the adult drebrin isoform (drebrin A) is restricted to neural tissues, while the embryonic drebrin isoforms (drebrin E1 and E2 in chicken and drebrin E in mammals) are found in a wide variety of tissues. In the developing brain, drebrin E (including chicken drebrin E2) is expressed in newly generated neurons. During neuronal migration, drebrin E is distributed ubiquitously within the neurons. Once drebrin A is expressed in the developing neuron, drebrin E is no longer present within the cell soma and accumulates in the growth cone of growing processes, resulting in the cessation of neuronal migration. The limited subcellular localization of drebrin A, which is possibly regulated by a drebrin A-specific mechanism, is likely to affect the localization of drebrin E. In the adult brain, drebrin is mainly localized in dendritic spines, but in some nuclei, drebrin can be detected in neuronal somata as well as dendritic spines. The fact that the developmental changes in drebrin expression highly correlate in time with the sensitive period of visual cortical plasticity in kittens suggests that synaptic plasticity depends on drebrin.


Subject(s)
Neuronal Plasticity , Neurons/metabolism , Neuropeptides/isolation & purification , Visual Cortex/diagnostic imaging , Animals , Cats , Chick Embryo , Chickens/metabolism , Dendritic Spines/chemistry , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Microscopy , Neurons/chemistry , Neurons/ultrastructure , Neuropeptides/biosynthesis , Neuropeptides/metabolism , Rats , Visual Cortex/chemistry , Visual Cortex/metabolism
14.
Adv Exp Med Biol ; 1006: 183-201, 2017.
Article in English | MEDLINE | ID: mdl-28865021

ABSTRACT

Synaptic plasticity underlies higher brain function such as learning and memory, and the actin cytoskeleton in dendritic spines composing excitatory postsynaptic sites plays a pivotal role in synaptic plasticity. In this chapter, we review the role of drebrin in the regulation of the actin cytoskeleton during synaptic plasticity, under long-term potentiation (LTP) and long-term depression (LTD). Dendritic spines have two F-actin pools, drebrin-decorated stable F-actin (DF-actin) and drebrin-free dynamic F-actin (FF-actin). Resting dendritic spines change their shape, but are fairly constant over time at steady state because of the presence of DF-actin. Accumulation of DF-actin is inversely regulated by the intracellular Ca2+ concentration. However, LTP and LTD stimulation induce Ca2+ influx through N-methyl-D-aspartate (NMDA) receptors into the potentiated spines, resulting in drebrin exodus via myosin II ATPase activation. The potentiated spines change to excited state because of the decrease in DF-actin and thus change their shape robustly. In LTP, the Ca2+ increase via NMDA receptors soon returns to the basal level, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) expression at the postsynaptic membrane is increased. The Ca2+ recovery and AMPAR increase coordinately induce the re-accumulation of DF-actin and change the dendritic spines from the excited state to steady state during LTP maintenance. During LTD, the prolonged intracellular Ca2+ increase inhibits the re-accumulation of DF-actin, resulting in facilitation of AMPAR endocytosis. Because of the positive feedback loop of the AMPAR decrease and drebrin re-accumulation inhibition, the dendritic spines are instable during LTD maintenance. Taken together, we propose the presence of resilient spines at steady state and plastic spines at excited state and discuss the physiological and pathological relevance of the two-state model to synaptic plasticity.


Subject(s)
Dendritic Spines/metabolism , Neuronal Plasticity/genetics , Neurons/metabolism , Neuropeptides/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Dendritic Spines/genetics , Neuropeptides/genetics , Synapses/metabolism , Synaptic Membranes/metabolism
15.
J Biol Chem ; 290(35): 21663-75, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26163515

ABSTRACT

We have reported previously that dopamine D2 receptor stimulation activates calcium/calmodulin-dependent protein kinase II (CaMKII) δ3, a CaMKII nuclear isoform, increasing BDNF gene expression. However, the mechanisms underlying that activity remained unclear. Here we report that CaMKIIδ3 is dephosphorylated at Ser(332) by protein phosphatase 1 (PP1), promoting CaMKIIδ3 nuclear translocation. Neuro-2a cells transfected with CaMKIIδ3 showed cytoplasmic and nuclear staining, but the staining was predominantly nuclear when CaMKIIδ3 was coexpressed with PP1. Indeed, PP1 and CaMKIIδ3 coexpression significantly increased nuclear CaMKII activity and enhanced BDNF expression. In support of this idea, chronic administration of the dopamine D2 receptor partial agonist aripiprazole increased PP1 activity and promoted nuclear CaMKIIδ3 translocation and BDNF expression in the rat brain substantia nigra. Moreover, aripiprazole treatment enhanced neurite extension and inhibited cell death in cultured dopaminergic neurons, effects blocked by PP1γ knockdown. Taken together, nuclear translocation of CaMKIIδ3 following dephosphorylation at Ser(332) by PP1 likely accounts for BDNF expression and subsequent neurite extension and survival of dopaminergic neurons.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Nucleus/metabolism , Dopaminergic Neurons/metabolism , Protein Phosphatase 1/metabolism , Amino Acid Sequence , Animals , Aripiprazole/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/chemistry , Cell Nucleus/drug effects , Cell Survival/drug effects , Cells, Cultured , Dopaminergic Neurons/drug effects , Male , Mice , Models, Biological , Molecular Sequence Data , Neurites/drug effects , Neurites/metabolism , Phosphopeptides/metabolism , Phosphorylation/drug effects , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/metabolism , Serine/metabolism , Substantia Nigra/drug effects , Substantia Nigra/metabolism
16.
J Neurosci Res ; 93(12): 1804-13, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26346430

ABSTRACT

Recent advances in human induced pluripotent stem cells (hiPSCs) offer new possibilities for biomedical research and clinical applications. Differentiated neurons from hiPSCs are expected to be useful for developing novel methods of treatment for various neurological diseases. However, the detailed process of functional maturation of hiPSC-derived neurons (hiPS neurons) remains poorly understood. This study analyzes development of hiPS neurons, focusing specifically on early developmental stages through 48 hr after cell seeding; development was compared with that of primary cultured neurons derived from the rat hippocampus. At 5 hr after cell seeding, neurite formation occurs in a similar manner in both neuronal populations. However, very few neurons with axonal polarization were observed in the hiPS neurons even after 48 hr, indicating that hiPS neurons differentiate more slowly than rat neurons. We further investigated the elongation speed of axons and found that hiPS neuronal axons were slower. In addition, we characterized the growth cones. The localization patterns of skeletal proteins F-actin, microtubule, and drebrin were similar to those of rat neurons, and actin depolymerization by cytochalasin D induced similar changes in cytoskeletal distribution in the growth cones between hiPS neurons and rat neurons. These results indicate that, during the very early developmental stage, hiPS neurons develop comparably to rat hippocampal neurons with regard to axonal differentiation, but the growth of axons is slower.


Subject(s)
Hippocampus/cytology , Induced Pluripotent Stem Cells/physiology , Neurons/physiology , Animals , Axons/physiology , Cell Differentiation/physiology , Cells, Cultured , Coculture Techniques , Cytochalasin D/metabolism , Cytoskeleton/metabolism , Embryo, Mammalian , Humans , Intermediate Filaments/metabolism , Microscopy, Confocal , Neurogenesis , Neurons/cytology , Neuropeptides/metabolism , Rats , Rats, Wistar , Time Factors , Tubulin/metabolism
17.
J Neurochem ; 128(4): 507-22, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24117785

ABSTRACT

Dendritic spines are small, actin-rich protrusions on dendrites, the development of which is fundamental for the formation of neural circuits. The actin cytoskeleton is central to dendritic spine morphogenesis. Drebrin is an actin-binding protein that is thought to initiate spine formation through a unique drebrin-actin complex at postsynaptic sites. However drebrin overexpression in neurons does not increase the final density of dendritic spines. In this study, we have identified and characterized a novel drebrin-binding protein, spikar. Spikar is localized in cell nuclei and dendritic spines, and accumulation of spikar in dendritic spines directly correlates with spine density. A reporter gene assay demonstrated that spikar acts as a transcriptional co-activator for nuclear receptors. We found that dendritic spine, but not nuclear, localization of spikar requires drebrin. RNA-interference knockdown and overexpression experiments demonstrated that extranuclear spikar regulates dendritic spine density by modulating de novo spine formation and retraction of existing spines. Unlike drebrin, spikar does not affect either the morphology or function of dendritic spines. These findings indicate that drebrin-mediated postsynaptic accumulation of spikar regulates spine density, but is not involved in regulation of spine morphology.


Subject(s)
Dendritic Spines/physiology , Neuropeptides/metabolism , Trans-Activators/physiology , Animals , Blotting, Western , Cells, Cultured , Cloning, Molecular , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Electrophysiological Phenomena , Female , Genes, Reporter/genetics , Genetic Vectors , Image Processing, Computer-Assisted , Immunohistochemistry , Patch-Clamp Techniques , Polymerase Chain Reaction , Pregnancy , RNA Interference , Rats , Saccharomyces cerevisiae , Subcellular Fractions/metabolism , Synapses/physiology , Transfection
18.
Brain Behav ; 14(1): e3354, 2024 01.
Article in English | MEDLINE | ID: mdl-38376048

ABSTRACT

INTRODUCTION: Olfactory deficit often occurs during the prodromal stage of Alzheimer's disease (AD). Although olfactory deficit is a useful measure for screening AD-related amnestic disorder, little is known about the cause of this deficit. Human and animal studies indicate that loss of the actin binding protein, drebrin, is closely related to cognitive dysfunction in AD. We hypothesized that the olfactory deficit in AD is caused by the loss of drebrin from the spine. METHODS: To verify this hypothesis, we performed the buried food test in two types of drebrin knockout mice, such as drebrin-double (E and A) knockout (DXKO) mice, and drebrin A-specific knockout (DAKO) mice. RESULTS: The DXKO mice spent a significantly longer time to find food compared with the wild-type (WT) littermates. In contrast, the DAKO mice, in which drebrin E rather than drebrin A is expressed in the postsynaptic sites of mature neurons, spent an equivalent time trying to find food compared to that of the WT. The DXKO mice showed comparable food motivation and sensory functions other than olfaction, including visual and auditory functions. CONCLUSION: These results indicate that drebrin is necessary for normal olfactory function. Further study is needed to determine whether it is necessary for normal olfaction to express drebrin E during the developmental stage or to have drebrin (whether E or A) present after maturation.


Subject(s)
Alzheimer Disease , Neuropeptides , Olfaction Disorders , Animals , Humans , Mice , Alzheimer Disease/metabolism , Mice, Knockout , Neurons/metabolism , Olfaction Disorders/genetics
19.
Neurosci Res ; 199: 30-35, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37659612

ABSTRACT

Dendritic spines are unique postsynaptic structures that emerge from the dendrites of neurons. They undergo activity-dependent morphological changes known as structural plasticity. The changes involve actin cytoskeletal remodeling, which is regulated by actin-binding proteins. CaMKII is a crucial molecule in synaptic plasticity. Notably, CaMKIIß subtype is known to bind to filamentous-actin and is closely involved in structural plasticity. We have shown that CaMKIIß binds to drebrin, and is localized in spines as both drebrin-dependent and drebrin-independent pools. However, the nanoscale relationship between drebrin and CaMKIIß within dendritic spines has not been clarified. In this study, we used stochastic optical reconstruction microscopy (STORM) to examine the detailed localization of these proteins. STORM imaging showed that CaMKIIß co-localized with drebrin in the core region of spines, and localized in the submembrane region of spines without drebrin. Interestingly, the dissociation of CaMKIIß and drebrin in the core region was induced by NMDA receptor activation. In drebrin knockdown neurons, CaMKIIß was decreased in the core region but not in the submembrane region. Together it indicates that the clustering of CaMKIIß in the spine core region is dependent on drebrin. These findings suggest that drebrin-dependent CaMKIIß is in a standby state before its activation.


Subject(s)
Dendrites , Dendritic Spines , Neuropeptides , Dendrites/metabolism , Dendritic Spines/metabolism , Actins/metabolism , Neurons/metabolism
20.
Cells ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667286

ABSTRACT

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Ischemic Stroke , Neural Stem Cells , Synapses , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Neural Stem Cells/cytology , Ischemic Stroke/pathology , Ischemic Stroke/therapy , Rats , Synapses/metabolism , Male , Neurites/metabolism , Brain/pathology , Brain Ischemia/therapy , Brain Ischemia/pathology , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Stroke/therapy , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL