Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Pharmaceutics ; 16(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39204347

ABSTRACT

Amorphous Indomethacin has enhanced bioavailability over its crystalline forms, yet amorphous forms can still possess a wide variety of structures. Here, Empirical Potential Structure Refinement (EPSR) has been used to provide accurate molecular models on the structure of five different amorphous Indomethacin samples, that are consistent with their high-energy X-ray diffraction patterns. It is found that the majority of molecules in amorphous Indomethacin are non-bonded or bonded to one neighboring molecule via a single hydrogen bond, in contrast to the doubly bonded dimers found in the crystalline state. The EPSR models further indicate a substantial variation in hydrogen bonding between different amorphous forms, leading to a diversity of chain structures not found in any known crystal structures. The majority of hydrogen bonds are associated with the carboxylic acid group, although a significant number of amide hydrogen bonding interactions are also found in the models. Evidence of some dipole-dipole interactions are also observed in the more structurally ordered models. The results are consistent with a distribution of Z-isomer intramolecular type conformations in the more disordered structures, that distort when stronger intermolecular hydrogen bonding occurs. The findings are supported by 1H and 2H NMR studies of the hydrogen bond dynamics in amorphous Indomethacin.

2.
J Pharm Sci ; 111(3): 818-824, 2022 03.
Article in English | MEDLINE | ID: mdl-34890631

ABSTRACT

Amorphous pharmaceuticals often possess a wide range of molecular conformations and bonding arrangements. The x-ray pair distribution function (PDF) method is a powerful technique for the characterization of variations in both intra-molecular and inter-molecular packing arrangements. Here, the x-ray PDF of amorphous Indomethacin is shown to be particularly sensitive to the preferred orientations of the chlorobenzyl ring found in isomers in the crystalline state. In some cases, the chlorobenzyl ring has no preferred torsional angle in the amorphous form, while in others evidence of distinct isomer orientations are observed. Amorphous samples with no preferred torsion angles of the chlorobenzyl ring are found to favor enhanced inter-molecular hydrogen bonding, and this is reflected in the intensity of the first sharp diffraction peak. These significant variations in structure rule out amorphous Indomethacin as a possible standard for x-ray PDF measurements. At high humidity, time resolved PDF's for >40 h reveal water molecules forming hydrogen bonds with Indomethacin molecules. A simple linear hydrogen bond model indicates that water molecules in the wet amorphous form have similar hydrogen bond strengths to those found between Indomethacin dimers or chains in the dry amorphous form.


Subject(s)
Indomethacin , Polymers , Hydrogen Bonding , Indomethacin/chemistry , Water , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL