Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-39009031

ABSTRACT

Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.


Subject(s)
Candida , Lignin , Metabolic Engineering , Riboflavin , Xylose , Lignin/metabolism , Riboflavin/metabolism , Riboflavin/biosynthesis , Candida/metabolism , Candida/genetics , Xylose/metabolism , Aldehyde Reductase/metabolism , Aldehyde Reductase/genetics , Fermentation , Bioreactors/microbiology , D-Xylulose Reductase/metabolism , D-Xylulose Reductase/genetics , Arabinose/metabolism
2.
Sensors (Basel) ; 24(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39066069

ABSTRACT

The present study reports on the development, adaptation, and optimization of a novel monoenzyme conductometric biosensor based on a recombinant arginine deiminase (ADI) for the determination of arginine in dietary supplements with a high accuracy of results. Aiming for the highly sensitive determination of arginine in real samples, we studied the effect of parameters of the working buffer solution (its pH, buffer capacity, ionic strength, temperature, and protein concentration) on the sensitivity of the biosensor to arginine. Thus, it was determined that the optimal buffer is a 5 mM phosphate buffer solution with pH 6.2, and the optimal temperature is 39.5 °C. The linear functioning range is 2.5-750 µM of L-arginine with a minimal limit of detection of 2 µM. The concentration of arginine in food additive samples was determined using the developed ADI-based biosensor. Based on the obtained results, the most effective method of biosensor analysis using the method of standard additions was chosen. It was also checked how the reproducibility of the biosensor changes during the analysis of pharmaceutical samples. The results of the determination of arginine in real samples using a conductometric biosensor based on ADI clearly correlated with the data obtained using the method of ion-exchange chromatography and enzymatic spectrophotometric analysis. We concluded that the developed biosensor would be effective for the accurate and selective determination of arginine in dietary supplements intended for the prevention and/or elimination of arginine deficiency.


Subject(s)
Arginine , Biosensing Techniques , Dietary Supplements , Hydrolases , Arginine/chemistry , Arginine/analysis , Biosensing Techniques/methods , Dietary Supplements/analysis , Hydrolases/chemistry , Hydrogen-Ion Concentration , Temperature , Osmolar Concentration , Reproducibility of Results , Limit of Detection
3.
Yeast ; 40(8): 367-376, 2023 08.
Article in English | MEDLINE | ID: mdl-36814084

ABSTRACT

The methylotrophic yeast Komagataella phaffii is considered one of the most effective producers of recombinant proteins of industrial importance. Effective producers should be characterized by the maximal reduction of degradation of the cytosolic recombinant proteins. The mechanisms of degradation of cytosolic proteins in K. phaffii have not been elucidated; however, data suggest that they are partially degraded in the autophagic pathway. To identify factors that influence this process, a developed system for the selection of recombinant strains of K. phaffii with impaired autophagic degradation of the heterologous model cytosolic protein (yeast ß-galactosidase) was used for insertional tagging of the genes involved in cytosolic proteins degradation. In one of the obtained strains, the insertion cassette disrupted the open reading frame of the gene encoding ß-1,6-N-acetylglucosaminyltransferase. A recombinant strain with deletion of this gene was also obtained. The rate of degradation of the ß-galactosidase enzyme was two times slower in the insertion mutant and 1.5 times slower in the deletion strain as compared to the parental strain with native ß-1,6-N-acetylglucosaminyltransferase. The rate of degradation of native K. phaffii cytosolic and peroxisomal enzymes, formaldehyde dehydrogenase, formate dehydrogenase, and alcohol oxidase, respectively, showed similar trends to that of ß-galactosidase-slower degradation in the deletion and insertional mutants as compared to the wild-type strain, but faster protein degradation relative to the strain completely defective in autophagy. We conclude that K. phaffii gene designated ACG1, encoding ß-1,6-N-acetylglucosaminyltransferase, is involved in autophagy of the cytosolic and peroxisomal proteins.


Subject(s)
N-Acetylglucosaminyltransferases , Saccharomycetales , Saccharomycetales/genetics , Recombinant Proteins/metabolism , beta-Galactosidase , Autophagy/genetics
4.
Yeast ; 40(8): 360-366, 2023 08.
Article in English | MEDLINE | ID: mdl-36751139

ABSTRACT

Flavin mononucleotide (FMN, riboflavin-5'-phosphate) is flavin coenzyme synthesized in all living organisms from riboflavin (vitamin B2 ) after phosphorylation in the reaction catalyzed by riboflavin kinase. FMN has several applications mostly as yellow colorant in food industry due to 200 times better water solubility as compared to riboflavin. Currently, FMN is produced by chemical phosphorylation of riboflavin, however, final product contains up to 25% of flavin impurities. Microbial overproducers of FMN are known, however, they accumulate this coenzyme in glucose medium. Current work shows that the recombinant strains of the flavinogenic yeast Candida famata with overexpressed FMN1 gene coding for riboflavin kinase in the recently isolated by us advanced riboflavin producers due to overexpression of the structural and regulatory genes of riboflavin synthesis and of the putative exporter of riboflavin from the cell, synthesized elevated amounts of FMN in the media not only with glucose but also in lactose and cheese whey. Activation of FMN accumulation on lactose and cheese whey was especially strong in the strains which expressed the gene of transcription activator SEF1 under control of the lactose-induced LAC4 promoter. The accumulation of this coenzyme by the washed cells of the best recombinant strain achieved 540 mg/L in the cheese whey supplemented only with ammonium sulfate during 48 h in shake flask experiments.


Subject(s)
Debaryomyces , Flavin Mononucleotide , Saccharomyces cerevisiae , Candida/genetics , Lactose , Riboflavin , Glucose
5.
Microb Cell Fact ; 22(1): 132, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474952

ABSTRACT

BACKGROUND: Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known. RESULTS: Roseoflavin biosynthesis genes have been expressed in riboflavin- or FMN-overproducing yeast strains of Candida famata and Komagataella phaffii. Both these strains accumulated aminoriboflavin, whereas only the latter produced roseoflavin. Aminoriboflavin isolated from the culture liquid of C. famata strain inhibited the growth of Staphylococcus aureus (including MRSA) and Listeria monocytogenes. Maximal accumulation of aminoriboflavin in shake-flasks reached 1.5 mg L- 1 (C. famata), and that of roseoflavin was 5 mg L- 1 (K. phaffii). Accumulation of aminoriboflavin and roseoflavin by K. phaffii recombinant strain in a bioreactor reached 22 and 130 mg L- 1, respectively. For comparison, recombinant strains of the native bacterial producer S. davaonensis accumulated near one-order less of roseoflavin while no recombinant producers of aminoriboflavin was reported at all. CONCLUSIONS: Yeast recombinant producers of bacterial antibiotics aminoriboflavin and roseoflavin were constructed and evaluated.


Subject(s)
Anti-Bacterial Agents , Eukaryota , Anti-Bacterial Agents/pharmacology , Riboflavin
6.
Mikrochim Acta ; 191(1): 47, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38133683

ABSTRACT

Amino acid L-arginine (Arg), usually presented in food products and biological liquids, can serve both as a useful indicator of food quality and an important biomarker in medicine. The biosensors based on Arg-selective enzymes are the most promising devices for Arg assay. In this research, three types of amperometric biosensors have been fabricated. They exploit arginine oxidase (ArgO), recombinant arginase I (ARG)/urease, and arginine deiminase (ADI) coupled with the ammonium-chelating redox-active nanoparticles. Cadmium-copper nanoparticles (nCdCu) as the most effective nanochelators were used for the development of ammonium chemosensors and enzyme-coupled Arg biosensors. The fabricated enzyme/nCdCu-containing bioelectrodes show wide linear ranges (up to 200 µM), satisfactory storage stabilities (14 days), and high sensitivities (A⋅M-1⋅m-2) to Arg: 1650, 1700, and 4500 for ADI-, ArgO- and ARG/urease-based sensors, respectively. All biosensors have been exploited to estimate Arg content in commercial juices. The obtained data correlate well with the values obtained by the reference method. A hypothetic scheme for mechanism of action of ammonium nanochelators in electron transfer reaction on the arginine-sensing electrodes has been proposed.


Subject(s)
Ammonium Compounds , Biosensing Techniques , Urease/chemistry , Arginine , Arginase/metabolism
7.
Microb Cell Fact ; 21(1): 161, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35964025

ABSTRACT

BACKGROUND: Riboflavin is a precursor of FMN and FAD which act as coenzymes of numerous enzymes. Riboflavin is an important biotechnological commodity with annual market sales exceeding nine billion US dollars. It is used primarily as a component of feed premixes, a food colorant, a component of multivitamin mixtures and medicines. Currently, industrial riboflavin production uses the bacterium, Bacillus subtilis, and the filamentous fungus, Ashbya gossypii, and utilizes glucose and/or oils as carbon substrates. RESULTS: We studied riboflavin biosynthesis in the flavinogenic yeast Candida famata that is a genetically stable riboflavin overproducer. Here it was found that the wild type C. famata is characterized by robust growth on lactose and cheese whey and the engineered strains also overproduce riboflavin on whey. The riboflavin synthesis on whey was close to that obtained on glucose. To further enhance riboflavin production on whey, the gene of the transcription activator SEF1 was expressed under control of the lactose-induced promoter of the native ß-galactosidase gene LAC4. These transformants produced elevated amounts of riboflavin on lactose and especially on whey. The strain with additional overexpression of gene RIB6 involved in conversion of ribulose-5-phosphate to riboflavin precursor had the highest titer of accumulated riboflavin in flasks during cultivation on whey. Activation of riboflavin synthesis was also obtained after overexpression of the GND1 gene that is involved in the synthesis of the riboflavin precursor ribulose-5-phosphate. The best engineered strains accumulated 2.5 g of riboflavin/L on whey supplemented only with (NH4)2SO4 during batch cultivation in bioreactor with high yield (more than 300 mg/g dry cell weight). The use of concentrated whey inhibited growth of wild-type and engineered strains of C. famata, so the mutants tolerant to concentrated whey were isolated. CONCLUSIONS: Our data show that the waste of dairy industry is a promising substrate for riboflavin production by C. famata. Possibilities for using the engineered strains of C. famata to produce high-value commodity (riboflavin) from whey are discussed.


Subject(s)
Cheese , Candida/genetics , Flavin Mononucleotide , Glucose , Lactose , Phosphates , Riboflavin , Whey
8.
Microb Cell Fact ; 21(1): 162, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35964033

ABSTRACT

BACKGROUND: Fuel ethanol from lignocellulose could be important source of renewable energy. However, to make the process feasible, more efficient microbial fermentation of pentose sugars, mainly xylose, should be achieved. The native xylose-fermenting thermotolerant yeast Ogataea polymorpha is a promising organism for further development. Efficacy of xylose alcoholic fermentation by O. polymorpha was significantly improved by metabolic engineering. Still, genes involved in regulation of xylose fermentation are insufficiently studied. RESULTS: We isolated an insertional mutant of O. polymorpha with impaired ethanol production from xylose. The insertion occurred in the gene HXS1 that encodes hexose transporter-like sensor, a close homolog of Saccharomyces cerevisiae sensors Snf3 and Rgt2. The role of this gene in xylose utilization and fermentation was not previously elucidated. We additionally analyzed O. polymorpha strains with the deletion and overexpression of the corresponding gene. Strains with deletion of the HXS1 gene had slower rate of glucose and xylose consumption and produced 4 times less ethanol than the wild-type strain, whereas overexpression of HXS1 led to 10% increase of ethanol production from glucose and more than 2 times increase of ethanol production from xylose. We also constructed strains of O. polymorpha with overexpression of the gene AZF1 homologous to S. cerevisiae AZF1 gene which encodes transcription activator involved in carbohydrate sensing. Such transformants produced 10% more ethanol in glucose medium and 2.4 times more ethanol in xylose medium. Besides, we deleted the AZF1 gene in O. polymorpha. Ethanol accumulation in xylose and glucose media in such deletion strains dropped 1.5 and 1.8 times respectively. Overexpression of the HXS1 and AZF1 genes was also obtained in the advanced ethanol producer from xylose. The corresponding strains were characterized by 20-40% elevated ethanol accumulation in xylose medium. To understand underlying mechanisms of the observed phenotypes, specific enzymatic activities were evaluated in the isolated recombinant strains. CONCLUSIONS: This paper shows the important role of hexose sensor Hxs1 and transcription factor Azf1 in xylose and glucose alcoholic fermentation in the native xylose-fermenting yeast O. polymorpha and suggests potential importance of the corresponding genes for construction of the advanced ethanol producers from the major sugars of lignocellulose.


Subject(s)
Fungal Proteins/metabolism , Xylose , Ethanol/metabolism , Glucose/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Pichia/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Xylose/metabolism
9.
FEMS Yeast Res ; 21(4)2021 05 18.
Article in English | MEDLINE | ID: mdl-33983391

ABSTRACT

Glucose is a preferred carbon source for most living organisms. The metabolism and regulation of glucose utilization are well studied mostly for Saccharomyces cerevisiae. Xylose is the main pentose sugar released from the lignocellulosic biomass, which has a high potential as a renewable feedstock for bioethanol production. The thermotolerant yeast Ogataea (Hansenula) polymorpha, in contrast to S. cerevisiae, is able to metabolize and ferment not only glucose but also xylose. However, in non-conventional yeasts, the regulation of glucose and xylose metabolism remains poorly understood. In this study, we characterize the role of transcriptional factors Mig1, Mig2, Tup1 and Hap4 in the natural xylose-fermenting yeast O. polymorpha. The deletion of MIG1 had no significant influence on ethanol production either from xylose or glucose, however the deletion of both MIG1 and MIG2 reduced the amount of ethanol produced from these sugars. The deletion of HAP4-A and TUP1 genes resulted in increased ethanol production from xylose. Inversely, the overexpression of HAP4-A and TUP1 genes reduced ethanol production during xylose alcoholic fermentation. Thus, HAP4-A and TUP1 are involved in repression of xylose metabolism and fermentation in yeast O. polymorpha and their deletion could be a viable strategy to improve ethanol production from this pentose.


Subject(s)
Fungal Proteins/metabolism , Glucose/metabolism , Saccharomycetales/metabolism , Transcription Factors/metabolism , Xylose/metabolism , Fermentation , Gene Deletion , Industrial Microbiology , Nuclear Proteins/metabolism , Repressor Proteins/metabolism
10.
Cell Biol Int ; 45(3): 528-535, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31903651

ABSTRACT

Many enzymes of methanol metabolism of methylotrophic yeasts are located in peroxisomes whereas some of them have the cytosolic localization. After shift of methanol-grown cells of methylotrophic yeasts to glucose medium, a decrease in the activity of cytosolic (formaldehyde dehydrogenase, formate dehydrogenase, and fructose-1,6-bisphosphatase [FBP]) along with peroxisomal enzymes of methanol metabolism is observed. Mechanisms of inactivation of cytosolic enzymes remain unknown. To study the mechanism of FBP inactivation, the changes in its specific activity of the wild type strain GS200, the strain with the deletion of the GSS1 hexose sensor gene and strain defected in autophagy pathway SMD1163 of Komagataella phaffii with or without the addition of the MG132 (proteasome degradation inhibitor) were investigated after shift of methanol-grown cells in glucose medium. Western blot analysis showed that inactivation of FBP in GS200 occurred due to protein degradation whereas inactivation in the strains SMD1163 and gss1Δ was negligible in such conditions. The effect of the proteasome inhibitor MG132 on FBP inactivation was insignificant. To confirm FBP degradation pathway, the recombinant strains with GFP-labeled Fbp1 of K. phaffii and red fluorescent protein-labeled peroxisomes were constructed on the background of GS200 and SMD1163. The fluorescent microscopy analysis of the constructed strains was performed using the vacuolar membrane dye FM4-64. Microscopic data confirmed that Fbp1 degrades by autophagy pathway in K. phaffii. K. phaffii transformants, which express heterologous ß-galactosidase under FLD promoter, have been constructed.


Subject(s)
Autophagy , Fructose-Bisphosphatase/metabolism , Methanol/metabolism , Saccharomycetales/cytology , Saccharomycetales/enzymology , Alcohol Oxidoreductases/metabolism , Cytosol/enzymology , Plasmids/metabolism , Proteolysis , beta-Galactosidase/metabolism
11.
Cell Biol Int ; 45(3): 507-517, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31829471

ABSTRACT

Amid known microbial bioethanol producers, the yeast Scheffersomyces (Pichia) stipitis is particularly promising in terms of alcoholic fermentation of both glucose and xylose, the main constituents of lignocellulosic biomass hydrolysates. However, the ethanol yield and productivity, especially from xylose, are still insufficient to meet the requirements of a feasible industrial technology; therefore, the construction of more efficient S. stipitis ethanol producers is of great significance. The aim of this study was to isolate the insertional mutants of S. stipitis with altered ethanol production from glucose and xylose and to identify the disrupted gene(s). Mutants obtained by random insertional mutagenesis were screened for their growth abilities on solid media with different sugars and for resistance to 3-bromopyruvate. Of more than 1,300 screened mutants, 17 were identified to have significantly changed ethanol yields during the fermentation. In one of the best fermenting strains (strain 4.6), insertion was found to occur within the ORF of a homolog to the Saccharomyces cerevisiae gene HEM25 (YDL119C), encoding a mitochondrial glycine transporter required for heme synthesis. The role of HEM25 in heme accumulation, respiration, and alcoholic fermentation in the yeast S. stipitis was studied using strain 4.6, the complementation strain Comp-a derivative from the 4.6 strain with expression of the WT HEM25 allele and the deletion strain hem25Δ. As hem25Δ produced lower amounts of ethanol than strain 4.6, we assume that the phenotype of strain 4.6 may be caused not only by HEM25 disruption but additionally by some point mutation.


Subject(s)
Ethanol/metabolism , Fermentation/genetics , Genes, Fungal , Glucose/metabolism , Mutagenesis, Insertional/genetics , Saccharomycetales/genetics , Xylose/metabolism , Aerobiosis , Carbon/pharmacology , Gene Expression Regulation, Fungal , Gene Library , Genetic Testing , Heme/metabolism , Mutation/genetics , Pyruvates/metabolism
12.
Antonie Van Leeuwenhoek ; 114(9): 1373-1385, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34170419

ABSTRACT

Lignocellulosic biomass is an attractive sustainable platform for fuel ethanol production. Xylose is a second after glucose most abounded sugar in lignocellulosic hydrolysates. Effective conversion of xylose to ethanol is one of key prerequisite for the development of an efficient conversion of biomass to ethanol. Engineered Saccharomyces cerevisiae strains are able to xylose fermentation. However, the yield and productivities of xylose fermentation remains lower in comparison with glucose fermentation. In this work, we studied impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose catabolism. We have isolated znf1Δ, adr1Δ, tup1Δ and hap4Δ mutants, and strains overexpressing SIP4, ADR1 and HAP4 genes on the background of xylose-fermenting strain of S. cerevisiae aiming to explore involvement of these transcription factors in regulation of xylose growth and fermentation. It was shown that hap4Δ reveal 1.8-fold increase of ethanol production from xylose as compared to that of parental strain. The hap4Δ mutant accumulates 10.38 g l-1 of ethanol with an overall ethanol yield reaching 0.41 g g-1 of consumed xylose. While the other constructed strains revealed a decrease in ethanol production from this pentose.


Subject(s)
Saccharomyces cerevisiae Proteins , Xylose , DNA-Binding Proteins , Fermentation , Glucose , Nuclear Proteins , Repressor Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics
13.
Yeast ; 37(9-10): 505-513, 2020 09.
Article in English | MEDLINE | ID: mdl-32307750

ABSTRACT

Nonconventional yeast Candida famata and Ogataea polymorpha are interesting organisms for basic and applied studies. O. polymorpha is methylotrophic thermotolerant yeast capable of xylose alcoholic fermentation whereas C. famata is capable of riboflavin overproduction. Still, the new tools for molecular research of these species are needed. The aim of this study was to develop the new dominant selective markers for C. famata and O. polymorpha usable in metabolic engineering experiments. In this work, the BSD gene from Aspergillus terreus coding for blasticidin S deaminase, O. polymorpha AUR1 gene required for sphingolipid synthesis and IMH3 gene, which encodes IMP dehydrogenase, were tested as the new dominant selective marker genes. Our results showed that AUR1 and IMH3 genes could be used as dominant selective markers for O. polymorpha with frequencies of transformation of 40 and 20 transformants per microgram of DNA, respectively. The IMH3 gene was successfully used as the marker for construction of O. polymorpha strains with increased ethanol production from xylose due to overexpression of TAL1, TKL1 and AOX1 genes. The BSD gene from A. terreus, conferring resistance to blasticidin, was found to be efficient for selection of C. famata transformants.


Subject(s)
Aspergillus/genetics , Candida/genetics , Fungal Proteins/genetics , Genes, Fungal , Metabolic Engineering/methods , Saccharomycetales/genetics , Ethanol/metabolism , Genetic Markers , Transformation, Genetic , Xylose/metabolism
14.
Yeast ; 37(9-10): 497-504, 2020 09.
Article in English | MEDLINE | ID: mdl-32529692

ABSTRACT

Riboflavin or vitamin B2 is an essential dietary component for humans and animals that is the precursor of flavin coenzymes flavin mononucleotide and flavin adenine dinucleotide involved in numerous enzymatic reactions. The flavinogenic yeast Candida famata overproduces riboflavin under iron starvation; however, regulation of this process is poorly understood. Regulatory gene SEF1 encoding transcription activator has been identified. Its deletion blocks yeast ability to overproduce riboflavin under iron starvation. It was shown here that the SEF1 promoters from other flavinogenic (Candida albicans) and non-flavinogenic (Candida tropicalis) yeasts fused with the open reading frame (ORF) of SEF1 gene from C. famata are able to restore riboflavin oversynthesis in sef1Δ mutants. It is known that in the pathogenic flavinogenic yeast C. albicans, Sfu1 (GATA-type transcription factor) represses SEF1. Here, we found that deletion of SFU1 gene in wild-type C. famata leads to riboflavin oversynthesis. Moreover, it was shown that disruption of VMA1 gene (coding for vacuolar ATPase subunit A) also results in riboflavin oversynthesis in C. famata.


Subject(s)
Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genes, Fungal , Riboflavin/biosynthesis , Saccharomycetales/genetics , Cloning, Molecular , Core Binding Factor Alpha 1 Subunit/genetics , Genes, Regulator/genetics , Iron/metabolism , Periplasmic Binding Proteins/genetics , Proton-Translocating ATPases/genetics , Riboflavin/metabolism , Saccharomycetales/metabolism , Transcription Factors/genetics
15.
Yeast ; 37(9-10): 467-473, 2020 09.
Article in English | MEDLINE | ID: mdl-32401376

ABSTRACT

Candida famata is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B2 ) in response to iron limitation. Overproduced riboflavin accumulates in the cultural medium rather than in the cells suggesting existence of the special mechanisms involved in riboflavin excretion. The corresponding protein and gene have not been identified in yeasts. At the same time, the corresponding gene BCRP has been identified in mammal mammary glands. Several homologs of the mammal BCRP gene encoding putative riboflavin efflux protein (excretase) were identified in Debaryomyces hansenii. The closest homolog was expressed under the control of D. hansenii TEF1 promoter in the riboflavin overproducing strain of C. famata. Resulted transformants overexpressed the corresponding gene and produced 1.4- to 1.8-fold more riboflavin as compared with the parental strain. They also were characterized by overexpression of RIB1 and RIB6 genes of riboflavin synthesis and exhibited elevated specific activity of GTP-cyclohydrolase II. Membrane localization of the riboflavin excretase was confirmed by fluorescent microscopy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Candida/genetics , Fungal Proteins/genetics , Mammals/genetics , Riboflavin/metabolism , Animals , Candida/classification , Cloning, Molecular , DNA, Fungal/genetics , Riboflavin/biosynthesis
16.
Microb Cell Fact ; 19(1): 96, 2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32334587

ABSTRACT

BACKGROUND: Xylose transport is one of the bottlenecks in the conversion of lignocellulosic biomass to ethanol. Xylose consumption by the wild-type strains of xylose-utilizing yeasts occurs once glucose is depleted resulting in a long fermentation process and overall slow and incomplete conversion of sugars liberated from lignocellulosic hydrolysates. Therefore, the engineering of endogenous transporters for the facilitation of glucose-xylose co-consumption is an important prerequisite for efficient ethanol production from lignocellulosic hydrolysates. RESULTS: In this study, several engineering approaches formerly used for the low-affinity glucose transporters in Saccharomyces cerevisiae, were successfully applied for earlier identified transporter Hxt1 in Ogataea polymorpha to improve xylose consumption (engineering involved asparagine substitution to alanine at position 358 and replacement of N-terminal lysine residues predicted to be the target of ubiquitination for arginine residues). Moreover, the modified versions of S. cerevisiae Hxt7 and Gal2 transporters also led to improved xylose fermentation when expressed in O. polymorpha. CONCLUSIONS: The O. polymorpha strains with modified Hxt1 were characterized by simultaneous utilization of both glucose and xylose, in contrast to the wild-type and parental strain with elevated ethanol production from xylose. When the engineered Hxt1 transporter was introduced into constructed earlier advanced ethanol producer form xylose, the resulting strain showed further increase in ethanol accumulation during xylose fermentation. The overexpression of heterologous S. cerevisiae Gal2 had a less profound positive effects on sugars uptake rate, while overexpression of Hxt7 revealed the least impact on sugars consumption.


Subject(s)
Fermentation , Fungal Proteins/metabolism , Hot Temperature , Pichia/metabolism , Protein Engineering , Xylose/metabolism , Alcohols/chemistry , Alcohols/metabolism , Fungal Proteins/chemistry , Pichia/chemistry , Xylose/chemistry
17.
Cell Biol Int ; 44(8): 1606-1615, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32227552

ABSTRACT

Xylose is a second-most abounded sugar after glucose in lignocellulosic hydrolysates and should be efficiently fermented for economically viable second-generation ethanol production. Despite significant progress in metabolic and evolutionary engineering, xylose fermentation rate of recombinant Saccharomyces cerevisiae remains lower than that for glucose. Our recent study demonstrated that peroxisome-deficient cells of yeast Ogataea polymorpha showed a decrease in ethanol production from xylose. In this work, we have studied the role of peroxisomes in xylose alcoholic fermentation in the engineered xylose-utilizing strain of S. cerevisiae. It was shown that peroxisome-less pex3Δ mutant possessed 1.5-fold decrease of ethanol production from xylose. We hypothesized that peroxisomal catalase Cta1 may have importance for hydrogen peroxide, the important component of reactive oxygen species, detoxification during xylose alcoholic fermentation. It was clearly shown that CTA1 deletion impaired ethanol production from xylose. It was found that enhancing the peroxisome population by modulation the peroxisomal biogenesis by overexpression of PEX34 activates xylose alcoholic fermentation.


Subject(s)
Fermentation , Peroxisomes/metabolism , Saccharomyces cerevisiae/genetics , Xylose/metabolism , Biomass , Catalase/genetics , Ethanol/metabolism , Gene Deletion , Genetic Engineering , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peroxins/genetics , Peroxins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
18.
J Ind Microbiol Biotechnol ; 47(1): 109-132, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31637550

ABSTRACT

This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.


Subject(s)
Ethanol/metabolism , Pichia/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Fermentation , Glucose/metabolism , Saccharomyces cerevisiae/genetics , Xylose/metabolism
19.
Yeast ; 36(5): 329-339, 2019 05.
Article in English | MEDLINE | ID: mdl-30903803

ABSTRACT

Production of fuel ethanol is one of the possible ways to utilize crude glycerol, substantial amounts of which are produced by biodiesel industry. Earlier, we have described construction of the recombinant strains of methylotrophic thermotolerant yeast Ogataea polymorpha with simultaneous overexpression of the genes PDC1 and ADH1, which produced increased amounts of ethanol from glycerol. In this work, we have further improved these strains by overexpression of genes involved either in oxidative (through dihydroxyacetone) or phosphorylative (through glycerol-3-phosphate) pathway of glycerol catabolism, as well as heterologous gene coding for glycerol transporter FPS1 from Komagataella phaffii (formerly, Pichia pastoris). Obtained recombinant strains produced up to 10.7 g/L of ethanol (with ethanol productivity 30 mg/g of biomass/hr and yield 132 mg/g of consumed glycerol) from pure glycerol and up to 3.55 g/L of ethanol (with ethanol productivity 11.6 mg/g of biomass/hr and yield 72.3 mg/g of consumed glycerol) from crude glycerol as a carbon source, which is approximately 15 times more relative to that of the O. polymorpha wild-type strain and 2.2 more relative to the earlier constructed strain.


Subject(s)
Ethanol/metabolism , Glycerol/metabolism , Metabolic Networks and Pathways/genetics , Saccharomycetales/genetics , Thermotolerance , Biomass , Carbohydrate Metabolism , Fermentation , Oxidative Phosphorylation , Pichia/genetics , Pichia/metabolism , Saccharomycetales/metabolism
20.
Yeast ; 36(5): 363-373, 2019 05.
Article in English | MEDLINE | ID: mdl-31037772

ABSTRACT

A set of 185 strains of Candida albicans from patients with vulvovaginal candidiasis (VVC) and from non-VVC clinical sources in southwest China was analysed. Strains were subjected to genotyping using CAI microsatellite typing and amplification of an intron-containing region of the 25S rRNA gene. Microsatellite genotypes of strains from non-VVC sources showed high polymorphism, whereas those of VVC were dominated by few, closely similar genotypes. However, among non-VVC strains, two genotypes were particularly prevalent in patients with lung cancer. 25S rDNA genotype A was dominant in VVC sources (86.7%), whereas genotypes A, B, and C were rather evenly distributed among non-VVC sources; known genotypes D and E were not found. In an experimental mouse model, isolates from lung cancer and AIDS patients proved to have higher virulence than VVC strains. Among 156 mice infected with C. albicans, 19 developed non-invasive urothelial carcinoma. No correlation could be established between parameters of virulence, source of infection, and incidence of carcinoma. C. albicans strains from VVC were less susceptible to itraconazole than the strains from non-VVC sources, whereas there was small difference in antifungal susceptibility between different 25S rDNA genotypes of C. albicans tested against amphotericin B, itraconazole, fluconazole, and flucytosine.


Subject(s)
Candida albicans/pathogenicity , Genotype , Microsatellite Repeats , Polymorphism, Genetic , Acquired Immunodeficiency Syndrome/microbiology , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida albicans/drug effects , Candida albicans/genetics , Candidiasis/microbiology , Candidiasis, Vulvovaginal/microbiology , DNA, Fungal/genetics , Female , Humans , Itraconazole/pharmacology , Itraconazole/therapeutic use , Lung Neoplasms/microbiology , Mice , Microbial Sensitivity Tests , Mycological Typing Techniques , Neoplasms/microbiology , Polymerase Chain Reaction , RNA, Ribosomal/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL