Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Transgenic Res ; 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33855640

ABSTRACT

The current coronavirus disease (COVID-19) pandemic remains one of the most serious public health problems. Increasing evidence shows that infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes a very complex and multifaceted disease that requires detailed study. Nevertheless, experimental research on COVID-19 remains challenging due to the lack of appropriate animal models. Herein, we report novel humanized mice with Cre-dependent expression of hACE2, the main entry receptor of SARS-CoV-2. These mice carry hACE2 and GFP transgenes floxed by the STOP cassette, allowing them to be used as breeders for the creation of animals with tissue-specific coexpression of hACE2 and GFP. Moreover, inducible expression of hACE2 makes this line biosafe, whereas coexpression with GFP simplifies the detection of transgene-expressing cells. In our study, we tested our line by crossing with Ubi-Cre mice, characterized by tamoxifen-dependent ubiquitous activation of Cre recombinase. After tamoxifen administration, the copy number of the STOP cassette was decreased, and the offspring expressed hACE2 and GFP, confirming the efficiency of our system. We believe that our model can be a useful tool for studying COVID-19 pathogenesis because the selective expression of hACE2 can shed light on the roles of different tissues in SARS-CoV-2-associated complications. Obviously, it can also be used for preclinical trials of antiviral drugs and new vaccines.

2.
J Assist Reprod Genet ; 38(2): 517-529, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33205358

ABSTRACT

PURPOSE: To study whether the application of femtosecond laser pulses for zona pellucida (ZP) drilling of blastocysts at the embryonic or abembryonic poles can promote hatching to start immediately through the hole formed and ensure high hatching rates and embryo viability. METHODS: Mouse blastocyst (E3.5) ZP were microdissected with femtosecond laser pulses (514-nm wavelength, 280-fs pulse duration, 2.5-kHz repetition rate) close to the trophoblast or inner cell mass (ICM). The sizes of the holes formed were in the range of 4.5-8.5 µm. Additional longitudinal incisions (5-7-µm long) on either side of the hole were created to determine whether hatching had started at the correct position. Embryos post-laser-assisted ZP drilling and intact embryos were cultured under standard conditions for 2 days; embryo quality was assessed twice daily. The hatching rates and in vitro and in vivo implantation rates (only for embryos with ZP dissected close to the ICM) were estimated. RESULTS: Femtosecond laser-assisted ZP drilling at the early blastocyst stage facilitated embryo hatching to start at the artificial opening with probability approaching 100%. Despite the artificial opening's small size, no embryo trapping during hatching was observed. Both experimental groups had higher hatching rates than the control groups (93.3-94.7% vs. 83.3-85.7%, respectively). The in vitro implantation rate was comparable with that of the control group (92.3% vs. 95.4%). No statistically significant differences were obtained in the in vivo implantation rates between the experimental and control groups. CONCLUSIONS: Blastocyst-stage femtosecond laser microsurgery of ZP is fast and delicate and enables the hatching process to be initiated in a controlled manner through a relatively small opening, with no embryo trapping.


Subject(s)
Blastocyst/metabolism , Embryo Implantation/genetics , Reproductive Techniques, Assisted , Trophoblasts/metabolism , Zona Pellucida/physiology , Animals , Blastocyst/radiation effects , Embryo Implantation/radiation effects , Embryo, Mammalian/physiology , Embryo, Mammalian/radiation effects , Embryonic Development/genetics , Embryonic Development/radiation effects , Fertilization in Vitro/methods , Lasers , Mice , Trophoblasts/radiation effects , Zona Pellucida/metabolism , Zona Pellucida/radiation effects
3.
Theriogenology ; 193: 77-86, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36156427

ABSTRACT

Adeno-associated viruses (AAV) are widely used in the field of genetically modified organism production. In this work, transduction of bovine embryos by AAV was selected as a potential approach to perform genetic modifications: we have used recombinant AAV to produce GFP-positive bovine embryos. Five different AAV serotypes were used to evaluate their ability to deliver genetic material into the bovine embryos. AAV9 serotype demonstrated minimal effectiveness (38,10%) as the genetic material transfer tool. Four other serotypes of AAVs (AAV1, AAV2, AAV6 and AAV-DJ) showed very close transduction efficiency (52,94-58,33%). CD209 is a C-type lectin receptor which is presented on the surface of macrophages and dendritic cells. CD209 recognizes a broad range of pathogens in a rather nonspecific manner. Production of CD209 knock-out is relevant for better understanding of infection mechanisms. Potentially, production of such knock-out may enable animals to become resistant to various infections. We have analyzed DNA samples from 22 blastocysts obtained after in vitro culture of zygotes subjected to recombinant AAV action. We have detected that 3 of 22 analyzed blastocysts contained mosaic CD209 frameshifts. Therefore, we have demonstrated proof of principle that application of AAV as a genome editing tool is an effective method for obtaining genetically modified cattle embryos.


Subject(s)
Dependovirus , Genetic Vectors , Animals , Cattle , Dependovirus/genetics , Gene Editing/veterinary , Lectins, C-Type/genetics
SELECTION OF CITATIONS
SEARCH DETAIL