Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Appl Microbiol ; 131(5): 2148-2160, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33629487

ABSTRACT

The diagnosis of biofilms continues to be a challenge, and there is no standardized protocol for such a diagnosis in clinical practice. In addition, some proposed methodologies are expensive to require significant amounts of time and a high number of trained staff, making them impracticable for clinical practice. In recent years, mass spectrophotometry/matrix-assisted laser desorption ionization time of flight (MALDI-TOF) has been applied it in biofilm studies. However, due to several problems and limitations of the technique, MALDI-TOF is far from being the gold standard for identifying biofilm formation. The omics analysis may prove to be a promising strategy for the diagnosis of biofilms in clinical laboratories since it allows the identification of pathogens in less time than needed for conventional techniques and in a more specific manner. However, omic tools are expensive and require qualified technical expertise, and an analysis of the data obtained needs to be careful not to neglect subpopulations in the biofilm. More studies must therefore be developed for creating a protocol that guarantees rapid biofilm identification, ensuring greater chances of success in infection control. This review discusses the current methods of microbial biofilm detection and future perspectives for its diagnosis in clinical practice.


Subject(s)
Biofilms , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
J Appl Microbiol ; 131(4): 2049-2060, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33694241

ABSTRACT

AIMS: The aim of this study was to evaluate the formation of biofilm by Candida spp. isolated from the bloodstream, using traditional spectrophotometric methodologies. In addition, the goal was to compare the results with those obtained through MALDI-TOF/MS, as well as to verify its use as a potential tool for the detection of biofilm-forming strains. METHODS AND RESULTS: Hundred and thirteen isolates of Candida spp. were studied: 41 were Candida albicans, 27 C. tropicalis, 18 C. glabrata, 17 C. parapsilosis and 10 C. krusei. Metabolic activity was determined through the tetrazolium salt (XTT) reduction assay and biomass by staining with Crystal Violet. All isolates were able to form biofilm, 94% of which were strong producers, with high biomass quantification (95%; 107/113) and high metabolic activity (99%; 112/113). Mass spectra of the biofilm-producing isolates showed differences in the intensity of mass peaks when compared with the spectra of the nonproducing strains. CONCLUSIONS: It was demonstrated that MALDI-TOF/MS was able to detect specific biofilm proteins, as the mass spectra of the isolates presented differences when compared with nonproducing strains. SIGNIFICANCE AND IMPACT OF THE STUDY: MALDI-TOF/MS can become a valuable tool for biofilm detection at the moment of the identification of the microorganism, thus contributing greatly to the management of patients with Candidemia.


Subject(s)
Candida , Candidemia , Biofilms , Candida albicans , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL