Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Ecotoxicol Environ Saf ; 233: 113330, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35189517

ABSTRACT

Environmental chemical (EC) exposures and our interactions with them has significantly increased in the recent decades. Toxicity associated biological characterization of these chemicals is challenging and inefficient, even with available high-throughput technologies. In this report, we describe a novel computational method for characterizing toxicity, associated biological perturbations and disease outcome, called the Chemo-Phenotypic Based Toxicity Measurement (CPTM). CPTM is used to quantify the EC "toxicity score" (Zts), which serves as a holistic metric of potential toxicity and disease outcome. CPTM quantitative toxicity is the measure of chemical features, biological phenotypic effects, and toxicokinetic properties of the ECs. For proof-of-concept, we subject ECs obtained from the Environmental Protection Agency's (EPA) database to the CPTM. We validated the CPTM toxicity predictions by correlating 'Zts' scores with known toxicity effects. We also confirmed the CPTM predictions with in-vitro, and in-vivo experiments. In in-vitro and zebrafish models, we showed that, mixtures of the motor oil and food additive 'Salpn' with endogenous nuclear receptor ligands such as Vitamin D3, dysregulated the nuclear receptors and key transcription pathways involved in Colorectal Cancer. Further, in a human patient derived cell organoid model, we found that a mixture of the widely used pesticides 'Tetramethrin' and 'Fenpropathrin' significantly impacts the population of patient derived pancreatic cancer cells and 3D organoid models to support rapid PDAC disease progression. The CPTM method is, to our knowledge, the first comprehensive toxico-physicochemical, and phenotypic bionetwork-based platform for efficient high-throughput screening of environmental chemical toxicity, mechanisms of action, and connection to disease outcomes.


Subject(s)
Colorectal Neoplasms , Pancreatic Neoplasms , Pesticides , Animals , Cholecalciferol , Humans , Pesticides/toxicity , Zebrafish
2.
Int J Mol Sci ; 23(4)2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35216449

ABSTRACT

Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MIC) implicated in tumorigenesis, invasion, and drug resistance, and is characterized by the elevated expression of stem cell markers, including CD133. The siRNA knockdown of CD133 enhances apoptosis induced by the MEK inhibitor trametinib in melanoma cells. This study investigates the underlying mechanisms of CD133's anti-apoptotic activity in patient-derived BAKP and POT cells, harboring difficult-to-treat NRASQ61K and NRASQ61R drivers, after CRISPR-Cas9 CD133 knockout or Dox-inducible expression of CD133. MACS-sorted CD133(+) BAKP cells were conditionally reprogrammed to derive BAKR cells with sustained CD133 expression and MIC features. Compared to BAKP, CD133(+) BAKR exhibit increased cell survival and reduced apoptosis in response to trametinib or the chemotherapeutic dacarbazine (DTIC). CRISPR-Cas9-mediated CD133 knockout in BAKR cells (BAKR-KO) re-sensitized cells to trametinib. CD133 knockout in BAKP and POT cells increased trametinib-induced apoptosis by reducing anti-apoptotic BCL-xL, p-AKT, and p-BAD and increasing pro-apoptotic BAX. Conversely, Dox-induced CD133 expression diminished apoptosis in both trametinib-treated cell lines, coincident with elevated p-AKT, p-BAD, BCL-2, and BCL-xL and decreased activation of BAX and caspases-3 and -9. AKT1/2 siRNA knockdown or inhibition of BCL-2 family members with navitoclax (ABT-263) in BAKP-KO cells further enhanced caspase-mediated apoptotic PARP cleavage. CD133 may therefore activate a survival pathway where (1) increased AKT phosphorylation and activation induces (2) BAD phosphorylation and inactivation, (3) decreases BAX activation, and (4) reduces caspases-3 and -9 activity and caspase-mediated PARP cleavage, leading to apoptosis suppression and drug resistance in melanoma. Targeting nodes of the CD133, AKT, or BCL-2 survival pathways with trametinib highlights the potential for combination therapies for NRAS-mutant melanoma stem cells for the development of more effective treatments for patients with high-risk melanoma.


Subject(s)
Melanoma , Proto-Oncogene Proteins c-akt , Apoptosis/genetics , CRISPR-Cas Systems/genetics , Caspases/metabolism , Cell Line, Tumor , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering/pharmacology , Skin Neoplasms , Stem Cells/metabolism , bcl-2-Associated X Protein/metabolism , Melanoma, Cutaneous Malignant
3.
Exp Dermatol ; 24(2): 101-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25363621

ABSTRACT

TGF-ß and the inhibitors of differentiation (Id) are linked. Smad7 and other TGF-ß inhibitors can potently suppress melanomagenesis; however, little work examining Ids has been reported in melanoma, particularly for Id4. Here, we report that Id4, but not Id2 or Id3 expression, surprisingly, activated robust melanin production in xenografts of previously amelanotic (lacking pigment) 1205Lu/Smad7 (S7) cells. Fontana-Masson stain and de-novo expression of MART-1 and tyrosinase proteins confirmed melanin production. Additionally, pigment-laden CD163+ mouse histiocytes with areas of extensive necrosis were found throughout S7/Id4 tumors, but not in parental 1205Lu, S7/Id2 or S7Id3-derived tumors. Mechanistic investigation revealed increased nuclear M-microphthalmia-associated transcription factor (MITF) and MART-1 promoter activation following Id4 expression in 1205Lu and WM852 melanoma cells, suggesting broader implications for Id4 in melanin synthesis. In human tumors, melanin colocalized with Id4 expression establishing a correlation. Current chemotherapeutics for melanoma are only marginally effective. Immunotherapy provides the most promise, yet the role of innate immunity is poorly understood. Here, TGF-ß suppression followed by Id4 expression results in extensive melanin synthesis and robust histiocyte recruitment following tumorigenesis, a novel role for Id4. Our results suggest that TGF-ß suppression coupled with pigment overproduction triggers an innate immune response resulting in tumor necrosis.


Subject(s)
Histiocytes/cytology , Inhibitor of Differentiation Proteins/metabolism , MART-1 Antigen/metabolism , Melanoma/metabolism , Pigmentation/physiology , Skin Neoplasms/metabolism , Transforming Growth Factor beta/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cell Proliferation , Genetic Vectors , Humans , Immunity, Innate , Keratinocytes/cytology , Melanins/chemistry , Melanins/metabolism , Mice , Mice, Nude , Neoplasm Transplantation , Promoter Regions, Genetic , Receptors, Cell Surface/metabolism , Retroviridae
4.
Carcinogenesis ; 35(4): 951-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24343358

ABSTRACT

The role for the inhibitors of differentiation (Ids) proteins in melanomagenesis has been poorly explored. In other cell types, Ids have been shown to contribute to cell proliferation, migration and angiogenesis and, along with a number of other genes, are direct downstream targets of the transforming growth factor (TGF)-ß pathway. Expression of Smad7, which suppress TGF-ß signaling, or synthetic TGF-ß inhibitors, was shown to potently suppress melanomagenesis. We found that endogenous Id2, Id3 and Id4 expression was elevated in 1205Lu versus 1205Lu cells constitutively expressing Smad7, indicating Ids may play a role in melanomagenesis. Therefore, the effects of Tet-inducible expression of Id2, Id3 or Id4 along with Smad7 in TGF-ß-dependent 1205Lu human melanoma cells were explored in vitro and in vivo. 1205Lu cells formed subcutaneous tumors in athymic mice, whereas cells expressing Smad7 failed to form tumors. However, 1205Lu cells expressing Smad7 along with doxycycline-induced Id2, Id3 or Id4 were able to overcome the potent tumorigenic block mediated by S7, to varying degrees. Conversely, Id small interfering RNA knockdown suppressed anchorage-independent growth of melanoma. Histology of tumors from 1205Lu cells expressing Smad7 + Id4 revealed an average of 31% necrosis, compared with 5.2% in tumors from 1205Lu with vector only. Downstream, Ids suppressed cyclin-dependent kinase inhibitors, and re-upregulated invasion and metastasis-related genes matrix metalloproteinase 2 (MMP2), MMP9, CXCR4 and osteopontin, shown previously to be downregulated in response to Smad7. This study shows that Id2, Id3 and Id4 are each able to overcome TGF-ß dependence, and establish a role for Ids as key mediators of TGF-ß melanomagenesis.


Subject(s)
Inhibitor of Differentiation Protein 2/physiology , Inhibitor of Differentiation Proteins/physiology , Melanoma/physiopathology , Neoplasm Proteins/physiology , Smad7 Protein/physiology , Transforming Growth Factor beta/physiology , Base Sequence , Cell Line, Tumor , Cell Proliferation , DNA Primers , Humans , Melanoma/pathology , Neoplasm Metastasis , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
5.
Front Biosci (Landmark Ed) ; 29(6): 230, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38940034

ABSTRACT

BACKGROUND: Existing animal models for testing therapeutics in the skin are limited. Mouse and rat models lack similarity to human skin in structure and wound healing mechanism. Pigs are regarded as the best model with regards to similarity to human skin; however, these studies are expensive, time-consuming, and only small numbers of biologic replicates can be obtained. In addition, local-regional effects of treating wounds that are closely adjacent to one-another with different treatments make assessment of treatment effectiveness difficult in pig models. Therefore, here, a novel nude mouse model of xenografted porcine hypertrophic scar (HTS) cells was developed. This model system was developed to test if supplying hypo-pigmented cells with exogenous alpha melanocyte stimulating hormone (α-MSH) will reverse pigment loss in vivo. METHODS: Dyschromic HTSs were created in red Duroc pigs. Epidermal scar cells (keratinocytes and melanocytes) were derived from regions of hyper-, hypo-, or normally pigmented scar or skin and were cryopreserved. Dermal fibroblasts (DFs) were isolated separately. Excisional wounds were created on nude mice and a grafting dome was placed. DFs were seeded on day 0 and formed a dermis. On day 3, epidermal cells were seeded onto the dermis. The grafting dome was removed on day 7 and hypo-pigmented xenografts were treated with synthetic α-MSH delivered with microneedling. On day 10, the xenografts were excised and saved. Sections were stained using hematoxylin and eosin hematoxylin and eosin (H&E) to assess xenograft structure. RNA was isolated and quantitative real-time polymerase chain reaction (qRT-PCR) was performed for melanogenesis-related genes TYR, TYRP1, and DCT. RESULTS: The seeding of HTSDFs formed a dermis that is similar in structure and cellularity to HTS dermis from the porcine model. When hyper-, hypo-, and normally-pigmented epidermal cells were seeded, a fully stratified epithelium was formed by day 14. H&E staining and measurement of the epidermis showed the average thickness to be 0.11 ± 0.07 µm vs. 0.06 ± 0.03 µm in normal pig skin. Hypo-pigmented xenografts that were treated with synthetic α-MSH showed increases in pigmentation and had increased gene expression of TYR, TYRP1, and DCT compared to untreated controls (TYR: 2.7 ± 1.1 vs. 0.3 ± 1.1; TYRP1: 2.6 ± 0.6 vs. 0.3 ± 0.7; DCT 0.7 ± 0.9 vs. 0.3 ± 1-fold change from control; n = 3). CONCLUSIONS: The developed nude mouse skin xenograft model can be used to study treatments for the skin. The cells that can be xenografted can be derived from patient samples or from pig samples and form a robust dual-skin layer containing epidermis and dermis that is responsive to treatment. Specifically, we found that hypo-pigmented regions of scar can be stimulated to make melanin by synthetic α-MSH in vivo.


Subject(s)
Cicatrix, Hypertrophic , Disease Models, Animal , Mice, Nude , Animals , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/pathology , Mice , Swine , alpha-MSH , Humans , Skin/pathology , Fibroblasts/metabolism , Melanocytes/metabolism , Keratinocytes/metabolism , Transplantation, Heterologous , Wound Healing , Skin Pigmentation
6.
Cells ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38727313

ABSTRACT

CD133, a cancer stem cell (CSC) marker in tumors, including melanoma, is associated with tumor recurrence, chemoresistance, and metastasis. Patient-derived melanoma cell lines were transduced with a Tet-on vector expressing CD133, generating doxycycline (Dox)-inducible cell lines. Cells were exposed to Dox for 24 h to induce CD133 expression, followed by RNA-seq and bioinformatic analyses, revealing genes and pathways that are significantly up- or downregulated by CD133. The most significantly upregulated gene after CD133 was amphiregulin (AREG), validated by qRT-PCR and immunoblot analyses. Induced CD133 expression significantly increased cell growth, percentage of cells in S-phase, BrdU incorporation into nascent DNA, and PCNA levels, indicating that CD133 stimulates cell proliferation. CD133 induction also activated EGFR and the MAPK pathway. Potential mechanisms highlighting the role(s) of CD133 and AREG in melanoma CSC were further delineated using AREG/EGFR inhibitors or siRNA knockdown of AREG mRNA. Treatment with the EGFR inhibitor gefitinib blocked CD133-induced cell growth increase and MAPK pathway activation. Importantly, siRNA knockdown of AREG reversed the stimulatory effects of CD133 on cell growth, indicating that AREG mediates the effects of CD133 on cell proliferation, thus serving as an attractive target for novel combinatorial therapeutics in melanoma and cancers with overexpression of both CD133 and AREG.


Subject(s)
AC133 Antigen , Amphiregulin , Cell Proliferation , Melanoma , Humans , AC133 Antigen/metabolism , AC133 Antigen/genetics , Amphiregulin/metabolism , Amphiregulin/genetics , Cell Line, Tumor , Cell Proliferation/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Melanoma/pathology , Melanoma/metabolism , Melanoma/genetics , Up-Regulation/drug effects
7.
Genes (Basel) ; 14(3)2023 03 02.
Article in English | MEDLINE | ID: mdl-36980902

ABSTRACT

The targets of topical genotoxic agents are basal and stem cells of the skin. These cells may misrepair DNA lesions, resulting in deleterious mutations of tumor suppressors or oncogenes. However, the genotoxicity of many compounds has not as yet been determined and needs to be tested using a relevant skin model. To this end, we designed a new high-throughput assay for the detection of agents that create DNA damage in epidermal stem and basal cells and used it to test known DNA-damaging agents. We utilized either 2D epidermal cells or 3D skin equivalents and topically exposed them to different compounds. The Skin Immuno-CometChip assay uses arrays of microwells formed in a collagen/agarose mixture to capture single basal cells in each microwell by virtue of collagen binding to α2ß1 integrin, which is present only on basal and stem cells. The presence of ß1 integrin was verified by immunofluorescent labeling cells that were then subjected to an electrical field, allowing for the migration of nicked DNA out of the nucleoid in alkali, with the resulting DNA comets stained and imaged. Furthermore, using improved comet detection software allowed for the automated and rapid quantification of DNA damage. Our study indicates that we can accurately predict genotoxicity by using 3D skin cultures, as well as keratinocytes grown in 2D monolayers.


Subject(s)
Epidermis , Skin , Skin/metabolism , Keratinocytes , Cytochromes/metabolism , DNA/metabolism
8.
PLoS One ; 16(3): e0248985, 2021.
Article in English | MEDLINE | ID: mdl-33765043

ABSTRACT

There are limited treatments for dyschromia in burn hypertrophic scars (HTSs). Initial work in Duroc pig models showed that regions of scar that are light or dark have equal numbers of melanocytes. This study aims to confirm melanocyte presence in regions of hypo- and hyper-pigmentation in an animal model and patient samples. In a Duroc pig model, melanocyte presence was confirmed using en face staining. Patients with dyschromic HTSs had demographic, injury details, and melanin indices collected. Punch biopsies were taken of regions of hyper-, hypo-, or normally pigmented scar and skin. Biopsies were processed to obtain epidermal sheets (ESs). A subset of ESs were en face stained with melanocyte marker, S100ß. Melanocytes were isolated from a different subset. Melanocytes were treated with NDP α-MSH, a pigmentation stimulator. mRNA was isolated from cells, and was used to evaluate gene expression of melanin-synthetic genes. In patient and pig scars, regions of hyper-, hypo-, and normal pigmentation had significantly different melanin indices. S100ß en face staining showed that regions of hyper- and hypo-pigmentation contained the same number of melanocytes, but these cells had different dendricity/activity. Treatment of hypo-pigmented melanocytes with NDP α-MSH produced melanin by microscopy. Melanin-synthetic genes were upregulated in treated cells over controls. While traditionally it may be thought that hypopigmented regions of burn HTS display this phenotype because of the absence of pigment-producing cells, these data show that inactive melanocytes are present in these scar regions. By treating with a pigment stimulator, cells can be induced to re-pigment.


Subject(s)
Burns/pathology , Cicatrix, Hypertrophic/pathology , Hypopigmentation/pathology , Melanocytes/pathology , alpha-MSH/metabolism , Adult , Animals , Biopsy , Biosynthetic Pathways , Burns/complications , Burns/genetics , Cells, Cultured , Cicatrix, Hypertrophic/complications , Cicatrix, Hypertrophic/genetics , Humans , Hyperpigmentation/complications , Hyperpigmentation/pathology , Hypopigmentation/complications , Hypopigmentation/genetics , Male , Melanins/biosynthesis , Melanocytes/metabolism , Middle Aged , Phenotype , Pigmentation , Swine , Up-Regulation/genetics , Young Adult
10.
J Burn Care Res ; 41(2): 339-346, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31541238

ABSTRACT

Burn injuries frequently result in hypertrophic scars (HTSs), specifically when excision and grafting are delayed due to limited resources or patient complications. In patient populations with dark baseline pigmentation, one symptom of HTS that often occurs is dyspigmentation. The mechanism behind dyspigmentation has not been explored, and, as such, prevention and treatment strategies for this morbidity are lacking. The mechanism by which cells make pigment is controlled at the apex of the pathway by pro-opiomelanocortin (POMC), which is cleaved to its products alpha-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropin hormone (ACTH). α-MSH and ACTH secreted by keratinocytes bind to melanocortin 1 receptor (MC1R), expressed on melanocytes, to initiate melanogenesis. POMC protein expression is upregulated in hyperpigmented scar compared to hypopigmented scar by an unknown mechanism in a Duroc pig model of HTS. POMC RNA levels, as well as the POMC gene promoter methylation status were investigated as a possible mechanism. DNA was isolated from biopsies obtained from distinct areas of hyper- or hypopigmented scar and normal skin. DNA was bisulfite-converted, and amplified using two sets of primers to observe methylation patterns in two different CpG islands near the POMC promoter. Amplicons were then sequenced and methylation patterns were evaluated. POMC gene expression was significantly downregulated in hypopigmented scar compared to normal skin, consistent with previously reported protein expression levels. There were significant changes in methylation of the POMC promoter; however, none that would account for the development of hyper- or hypopigmentation. Future work will focus on other areas of POMC transcriptional regulation.


Subject(s)
Burns/metabolism , Cicatrix, Hypertrophic/metabolism , DNA Methylation , Hypopigmentation/metabolism , Pro-Opiomelanocortin/metabolism , Animals , DNA Damage , Disease Models, Animal , Male , Swine , alpha-MSH/metabolism
11.
Regen Ther ; 15: 138-148, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33426212

ABSTRACT

Wound healing requires well-coordinated events including hemostasis, inflammation, proliferation, and remodeling. Delays in any of these stages leads to chronic wounds, infections, and hypertrophic scarring. Burn wounds are particularly problematic, and may require intervention to ensure timely progression to reduce morbidity and mortality. To accelerate burn wound healing, Platelet-Rich Plasma (PRP)1 can be of value, since platelets release growth factor proteins and inorganic polyphosphates (polyP) that may be integral to wound healing. We used polyP-depleted keratinocyte (HaCaT) and fibroblast cell culture models to determine cell proliferation and scratch-wound repair to determine if polyP, platelet lysate, or combined treatment could accelerate wound healing. While polyP and PRP significantly reduced the open scratch-wound area in fibroblasts and keratinocytes, polyP had no effect on keratinocyte or fibroblast proliferation. PRP was also evaluated as a treatment in a murine model of full thickness wound healing in vivo, including a treatment in which PRP was supplemented with purified polyP. PRP induced significantly more rapid re-epithelialization by Day 3. Pure polyP enhanced the effects of PRP on epithelial tongues, which were significantly elongated in the PRP + high-dose polyP treatment groups compared to PRP alone. Thus, PRP and polyP may serve as an effective therapeutic combination for treating wounds.

12.
Carcinogenesis ; 30(7): 1252-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19451188

ABSTRACT

Id2 is a member of the helix-loop-helix (HLH) family of transcription regulators known to antagonize basic HLH transcription factors and proteins of the retinoblastoma tumor suppressor family and is implicated in the regulation of proliferation, differentiation, apoptosis and carcinogenesis. To investigate its proposed role in tumorigenesis, Id2 or deletion mutants were re-expressed in Id2(-/-) dermal fibroblasts. Ectopic expression of Id2 or mutants containing the central HLH domain increased S-phase cells, cell proliferation in low and normal serum and induced tumorigenesis when grafted or subcutaneously injected into athymic mice. Similar to their downregulation in human tumors, the expression of cyclin-dependent kinase inhibitors p27(KIP1) and p15(INK4b) was decreased by Id2; the former by downregulation of its promoter by the Id2 HLH domain-mediated sequestration of E12/E47. Re-expression of p27(KIP1) in Id2-overexpressing cells reverted the hyperproliferative and tumorigenic phenotype, implicating Id2 as an oncogene working through p27(KIP1). These results tie together the previously observed misregulation of Id2 with a novel mechanism for tumorigenesis.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Cyclin-Dependent Kinase Inhibitor p15/physiology , Cyclin-Dependent Kinase Inhibitor p27/physiology , Fibroblasts/metabolism , Inhibitor of Differentiation Protein 2/physiology , TCF Transcription Factors/physiology , Animals , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Fibroblasts/pathology , Helix-Loop-Helix Motifs , Inhibitor of Differentiation Protein 2/genetics , Mice , Mice, Knockout , Neoplasm Transplantation , S Phase , Transcription Factor 7-Like 1 Protein
13.
Exp Dermatol ; 18(4): 387-95, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19054058

ABSTRACT

Id3 belongs to the inhibitor of differentiation family of helix-loop-helix transcription factors, important in proliferation, differentiation and apoptosis. We showed that Id3, but not Id2 or Id1, mediates the UVB-sensitization of immortalized keratinocytes by inducing caspase 9-dependent apoptosis. In this study, quantitative PCR analysis revealed a time-dependent increase in Id3 mRNA induced by UVB, dependent on reactive oxygen species. UVB upregulated promoter activity of Id3, but not Id2, at early time points, as shown by reporter assays and also stabilized Id3 mRNA, increasing its half-life from 10 to approximately 60 min. We next examined downstream events related to UVB-induced Id3 upregulation and investigated the effects of UVB or ectopic expression of Id3 on bax promoter activity. Regulatory elements in the bax promoter that mediate transcriptional activation by UVB and Id3, in the absence of p53, were identified. Bax promoter deletion analysis revealed that transcriptional activation by UVB involves a 738-bp region upstream from the transcription start site of bax. Mimicking the effects of UVB, ectopic expression of Id3 also upregulated bax mRNA and activated this 738-bp fragment. Mutational analysis of the transcription binding sites further showed that point mutations of the E-box region found in the 738-bp fragment, but not in a 174-bp fragment, completely abolished Id3- and UVB-inducible bax promoter activity, thus confirming the importance of Id3 and UVB-mediated Id3 upregulation in activating the bax promoter. These results suggest a mechanism whereby reactive oxygen species upregulation of Id3 relieves repression of bax via E-box-binding factors.


Subject(s)
Inhibitor of Differentiation Proteins/metabolism , Keratinocytes/metabolism , Neoplasm Proteins/metabolism , Promoter Regions, Genetic/radiation effects , Reactive Oxygen Species/metabolism , Ultraviolet Rays , Up-Regulation/radiation effects , bcl-2-Associated X Protein/metabolism , Apoptosis/physiology , Cells, Cultured , E-Box Elements/physiology , Humans , Keratinocytes/cytology , Keratinocytes/radiation effects , Promoter Regions, Genetic/genetics , RNA, Messenger/metabolism , bcl-2-Associated X Protein/genetics
14.
Cancers (Basel) ; 11(10)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31623313

ABSTRACT

CD133, known as prominin1, is a penta-span transmembrane glycoprotein presumably a cancer stem cell marker for carcinomas, glioblastomas, and melanomas. We showed that CD133(+) 'melanoma-initiating cells' are associated with chemoresistance, contributing to poor patient outcome. The current study investigates the role(s) of CD133 in invasion and metastasis. Magnetic-activated cell sorting of a melanoma cell line (BAKP) followed by transwell invasion assays revealed that CD133(+) cells are significantly more invasive than CD133(-) cells. Conditional reprogramming of BAKP CD133(+) cells maintained stable CD133 overexpression (BAK-R), and induced cancer stem cell markers, melanosphere formation, and chemoresistance to kinase inhibitors. BAK-R cells showed upregulated CD133 expression, and consequently were more invasive and metastatic than BAK-P cells in transwell and zebrafish assays. CD133 knockdown by siRNA or CRISPR-Cas9 (BAK-R-T3) in BAK-R cells reduced invasion and levels of matrix metalloproteinases MMP2/MMP9. BAK-R-SC cells, but not BAK-R-T3, were metastatic in zebrafish. While CD133 knockdown by siRNA or CRISPR-Cas9 in BAK-P cells attenuated invasion and diminished MMP2/MMP9 levels, doxycycline-induced CD133 expression in BAK-P cells enhanced invasion and MMP2/MMP9 concentrations. CD133 may therefore play an essential role in invasion and metastasis via upregulation of MMP2/MMP9, leading to tumor progression, and represents an attractive target for intervention in melanoma.

15.
J Burn Care Res ; 40(1): 58-71, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30189005

ABSTRACT

Hypertrophic scar (HTS) occurs frequently after burn injury. Treatments for some aspects of scar morbidity exist, however, dyspigmentation treatments are lacking due to limited knowledge about why scars display dyschromic phenotypes. Full thickness wounds were created on duroc pigs that healed to form dyschromic HTS. HTS biopsies and primary cell cultures were then used to study pigmentation signaling. Biopsies of areas of both pigment types were taken for analysis. At the end of the experiment, melanocyte-keratinocyte cocultures were established from areas of differential pigmentation. Heterogeneously dyspigmented scars formed with regions of hyperpigmentation and hypopigmentation. Melanocytes were present in both pigment types measured by S100ß quantitative real time-polymerase chain reaction (qRT-PCR) and immunostaining, and visualized by dendritic cell presence in primary cultures. P53 expression was not different between the two pigment types. Hyperpigmented scars had upregulated levels of proopiomelanocortin (POMC), adrenocorticotropic hormone (ACTH), α-melanocyte stimulating hormone (α-MSH), stem cell factor (SCF), and c-KIT and melanocortin 1 receptors (MC1R) compared to hypopigmented regions. Many genes involved in dyspigmentation were differentially regulated by microarray analysis including MITF, TYR, TYRP1, and DCT. MiTF expression was not different upon further exploration, but TYR, TYRP1, and DCT were upregulated in intact biopsies measured by qRT-PCR and confirmed by immunostaining. This is the first work to confirm the presence of melanocytes in hypopigmented scar using qRT-PCR and primary cell culture. An understanding of the initial steps in dyspigmentation signaling, as well as the downstream effects of these signals, will inform treatment options for patients with scars and provide insight to where pharmacotherapy may be directed.


Subject(s)
Burns/physiopathology , Cicatrix, Hypertrophic/physiopathology , Hypopigmentation/physiopathology , Melanocytes/cytology , Animals , Biomarkers/metabolism , Biopsy , Coculture Techniques , Keratinocytes/cytology , Signal Transduction , Swine , Up-Regulation
16.
J Oncol ; 2019: 6486173, 2019.
Article in English | MEDLINE | ID: mdl-31379943

ABSTRACT

FDA-approved kinase inhibitors are now used for melanoma, including combinations of the MEK inhibitor trametinib, and BRAF inhibitor dabrafenib for BRAFV600 mutations. NRAS-mutated cell lines are also sensitive to MEK inhibition in vitro, and NRAS-mutated tumors have also shown partial response to MEK inhibitors. However, melanoma still has high recurrence rates due to subpopulations, sometimes described as "melanoma initiating cells," resistant to treatment. Since CD133 is a putative cancer stem cell marker for different cancers, associated with decreased survival, we examined resistance of patient-derived CD133(+) and CD133(-) melanoma cells to MAPK inhibitors. Human melanoma cells were exposed to increasing concentrations of trametinib and/or dabrafenib, either before or after separation into CD133(+) and CD133(-) subpopulations. In parental CD133-mixed lines, the percentages of CD133(+) cells increased significantly (p<0.05) after high-dose drug treatment. Presorted CD133(+) cells also exhibited significantly greater (p<0.05) IC50s for single and combination MAPKI treatment. siRNA knockdown revealed a causal relationship between CD133 and drug resistance. Microarray and qRT-PCR analyses revealed that ten of 18 ABC transporter genes were significantly (P<0.05) upregulated in the CD133(+) subpopulation, while inhibition of ABC activity increased sensitivity, suggesting a mechanism for increased drug resistance of CD133(+) cells.

17.
J Cell Biochem ; 104(1): 318-28, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18041763

ABSTRACT

Poly(ADP-ribose) polymerase-1 (PARP-1) is the most abundant and the best-studied isoform of a family of enzymes that catalyze the polymerization of ADP-ribose from NAD(+) onto target proteins. PARP-1 is well known to involve in DNA repair, genomic stability maintenance, transcription regulation, apoptosis, and necrosis. Polyubiquitylation targets proteins towards degradation and regulates cell cycle progression, transcription, and apoptosis. Here we report polyubiquitylation of PARP-1 in mouse fibroblasts in the presence of proteasome inhibitor and in full-length recombinant PARP-1 in vitro under standard ubiquitylation assay conditions by immunoprecipitation and immunoblotting. Mutation of ubiquitin K48R but not ubiquitin K63R abolishes polyubiquitylation of PARP-1, indicating that K48 of ubiquitin was used in the formation of polyubiquitin chain and that ubiquitylated PARP-1 is likely destined for degradation. Full-length PARP-1 was ubiquitylated most likely at the N-terminal 24 kDa domain of PARP-1 as suggested by the inhibition of ubiquitylation by activated DNA and the absence of polyubiquitin in the C-terminal 89 kDa PARP-1 derived from caspase-catalyzed cleavage. NAD(+) inhibited ubiquitylation of PARP-1, while dipeptides ArgAla and LeuAla enhanced ubiquitylation of PARP-1. ATP inhibited the synthesis of poly(ADP-ribose) by PARP-1 and affinity purified polyubiquitylated PARP-1 was active in PAR synthesis. The results suggest polyubiquitylation of PARP-1 could regulate poly(ADP-ribosyl)ation of nuclear proteins by PARP-1 and consequently apoptosis and PARP-1 regulated cellular processes through ubiquitin-dependent degradation pathways.


Subject(s)
Poly(ADP-ribose) Polymerases/metabolism , Ubiquitin/metabolism , Animals , Cells, Cultured , DNA/pharmacology , Dipeptides/pharmacology , Fibroblasts/metabolism , Mice , Mutation, Missense , NAD/pharmacology , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1 , Protein Processing, Post-Translational , Ubiquitin/genetics , Ubiquitination
18.
Oncotarget ; 8(8): 12576-12595, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28157711

ABSTRACT

Structure-based drug repositioning in addition to random chemical screening is now a viable route to rapid drug development. Proteochemometric computational methods coupled with kinase assays showed that mebendazole (MBZ) binds and inhibits kinases important in cancer, especially both BRAFWT and BRAFV600E. We find that MBZ synergizes with the MEK inhibitor trametinib to inhibit growth of BRAFWT-NRASQ61K melanoma cells in culture and in xenografts, and markedly decreased MEK and ERK phosphorylation. Reverse Phase Protein Array (RPPA) and immunoblot analyses show that both trametinib and MBZ inhibit the MAPK pathway, and cluster analysis revealed a protein cluster showing strong MBZ+trametinib - inhibited phosphorylation of MEK and ERK within 10 minutes, and its direct and indirect downstream targets related to stress response and translation, including ElK1 and RSKs within 30 minutes. Downstream ERK targets for cell cycle, including cMYC, were down-regulated, consistent with S- phase suppression by MBZ+trametinib, while apoptosis markers, including cleaved caspase-3, cleaved PARP and a sub-G1 population, were all increased with time. These data suggest that MBZ, a well-tolerated off-patent approved drug, should be considered as a therapeutic option in combination with trametinib, for patients with NRASQ61mut or other non-V600E BRAF mutant melanomas.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Proliferation/drug effects , Mebendazole/pharmacology , Melanoma/pathology , Pyridones/pharmacology , Pyrimidinones/pharmacology , Animals , Antinematodal Agents/pharmacology , Cell Line, Tumor , GTP Phosphohydrolases , Humans , Immunoblotting , Melanoma/genetics , Membrane Proteins , Mice , Protein Array Analysis , Xenograft Model Antitumor Assays
19.
Oncogene ; 24(35): 5443-58, 2005 Aug 18.
Article in English | MEDLINE | ID: mdl-16007217

ABSTRACT

Solar ultraviolet B (UVB) acts as both an initiator and promoter in models of multistage skin carcinogenesis. We found that, whereas UVB induces apoptosis in human papillomavirus-16 E6/7-immortalized keratinocytes, it inhibits markers of differentiation in human foreskin keratinocytes (HFK). Potential mechanisms for this differential response were examined by DNA microarray, which revealed that UVB alters the expression of three of the four human inhibitor of differentiation/DNA binding (Id) proteins that comprise a class of helix-loop-helix family of transcription factors involved in proliferation, differentiation, apoptosis, and carcinogenesis. These results were verified by RT-PCR and immunoblot analysis of control and UVB-irradiated primary and immortalized keratinocytes. Whereas Id1 was downregulated in both cell types, Id2 expression was upregulated in primary HFK, but not immortalized cells. In contrast, Id3 expression was significantly increased only in immortalized cells. The differential expression pattern of Id2 in response to UVB was recapitulated in reporter constructs containing the 5' regulatory regions of this gene. Id2 promoter activity increased in response to UVB in HFK, but not in immortalized cells. To identify the regulatory elements in the Id2 promoter that mediate transcriptional activation by UVB in HFK, promoter deletion/mutation analysis was performed. Deletion analysis revealed that transactivation involves a 166 bp region immediately upstream to the Id2 transcriptional start site and is independent of c-Myc. The consensus E twenty-six (ETS) binding site at -120 appears to mediate UVB transcriptional activation of Id2 because point mutations at this site completely abrogated this response. Chromatin immunoprecipitation and electrophoretic mobility-shift assays verified that the Id2 promoter interacts with known Id2 promoter (ETS) binding factors Erg1/2 and Fli1, but not with c-Myc; and this interaction is enhanced after UVB exposure. Similar to the effects of UVB exposure, ectopic expression of Id2 protein in primary HFK resulted in inhibition of differentiation, as shown by decreased levels of the terminal differentiation marker keratin K1 and inhibition of involucrin crosslinking. Reduction of Id2 expression by small interfering RNAs attenuated the UVB-induced inhibition of differentiation in these cells. These results suggest that UVB-induced inhibition of differentiation of primary HFK is at least, in part, due to the upregulation of Id2, and that upregulation of Id2 by UVB might predispose keratinocytes to carcinogenesis by preventing their normal differentiation program.


Subject(s)
Cell Differentiation/radiation effects , DNA-Binding Proteins/radiation effects , Keratinocytes/cytology , Keratinocytes/radiation effects , Repressor Proteins/radiation effects , Transcription Factors/radiation effects , Cell Line, Transformed , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Electrophoretic Mobility Shift Assay , Gene Expression/radiation effects , Gene Expression Profiling , Humans , Immunoblotting , Immunoprecipitation , Inhibitor of Differentiation Protein 2 , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Repressor Proteins/genetics , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/radiation effects , Ultraviolet Rays , Up-Regulation
20.
Toxicology ; 227(1-2): 21-35, 2006 Oct 03.
Article in English | MEDLINE | ID: mdl-16935404

ABSTRACT

Sulfur mustard (SM) causes blisters in the skin through a series of cellular changes that we are beginning to identify. We earlier demonstrated that SM toxicity is the result of induction of both death receptor and mitochondrial pathways of apoptosis in human keratinocytes (KC). Because of its importance in apoptosis in the skin, we tested whether calmodulin (CaM) mediates the mitochondrial apoptotic pathway induced by SM. Of the three human CaM genes, the predominant form expressed in KC was CaM1. RT-PCR and immunoblot analysis revealed upregulation of CaM expression following SM treatment. To delineate the potential role of CaM1 in the regulation of SM-induced apoptosis, retroviral vectors expressing CaM1 RNA in the antisense (AS) orientation were used to transduce and derive stable CaM1 AS cells, which were then exposed to SM and subjected to immunoblot analysis for expression of apoptotic markers. Proteolytic activation of executioner caspases-3, -6, -7, and the upstream caspase-9, as well as caspase-mediated PARP cleavage were markedly inhibited by CaM1 AS expression. CaM1 AS depletion attenuated SM-induced, but not Fas-induced, proteolytic processing and activation of caspase-3. Whereas control KC exhibited a marked increase in apoptotic nuclear fragmentation after SM, CaM1 AS cells exhibited normal nuclear morphology up to 48h after SM, indicating that suppression of apoptosis in CaM1 AS cells increases survival and does not shift to a necrotic death. CaM has been shown to activate the phosphatase calcineurin, which can induce apoptosis by Bad dephosphorylation. Interestingly, whereas SM-treated CaM1-depleted KC expressed the phosphorylated non-apoptotic sequestered form of Bad, Bad was present in the hypophosphorylated apoptotic form in SM-exposed control KC. To determine if pharmacological CaM inhibitors could attenuate SM-induced apoptosis via Bad dephosphorylation, KC were pretreated with the CaM-specific antagonist W-13 or its less active structural analogue W-12. Following SM exposure, KC exhibited Bad dephosphorylation, which was inhibited in the presence of W-13, but not with W-12. Consequently, W-13 but not W-12 markedly suppressed SM-induced proteolytic processing and activation of caspase-3, as well as apoptotic nuclear fragmentation. Finally, while the CaM antagonist W-13 and the calcineurin inhibitor cyclosporin A attenuated SM-induced caspase-3 activation, inhibitors for CaM-dependent protein kinase II (KN62 and KN93) did not. These results indicate that CaM, calcineurin, and Bad also play a role in SM-induced apoptosis, and may therefore be targets for therapeutic intervention to reduce SM injury.


Subject(s)
Apoptosis/drug effects , Calmodulin/physiology , Chemical Warfare Agents/toxicity , Keratinocytes/drug effects , Mustard Gas/toxicity , Calcineurin/biosynthesis , Calcium-Calmodulin-Dependent Protein Kinases/biosynthesis , Calmodulin/biosynthesis , Caspase 3/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cell Survival/drug effects , Cells, Cultured , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Up-Regulation , bcl-Associated Death Protein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL