Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Faraday Discuss ; 239(0): 51-69, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35833715

ABSTRACT

The solid solution series between Cu2ZnSnSe4, crystallizing in the kesterite type structure, and Cu2MnSnSe4, adopting the stannite type structure, i.e. Cu2(Zn1-xMnx)SnSe4, was studied by a combination of neutron and X-ray powder diffraction. Powder samples with 0 ≤ x ≤ 1 were synthesized by the solid state reaction of the pure elements and it was confirmed by wavelength-dispersive X-ray spectroscopy that each contained a homogeneous, off-stoichiometric quaternary phase. The lattice parameters and cation site occupancy factors were determined simultaneously by the Rietveld analysis of the neutron and X-ray powder diffraction data. The refined site occupancy factors were used to determine the average neutron scattering length of the cation sites in the crystal structure of the Cu2(Zn1-xMnx)SnSe4 mixed crystals, from which a cation distribution model was derived. For the end member Cu2ZnSnSe4, the disordered kesterite structure was confirmed and for Cu2MnSnSe4, the stannite structure was confirmed. The cross-over from the kesterite to stannite type structure by Zn2+ ↔ Mn2+ substitution in the Cu2Zn1-xMnxSnSe4 solid solution can be seen as a cation re-distribution process among the positions (0, 0, 0), (0, ½, ») and (0, », ¾), including Cu+, Zn2+ and Mn2+. The Sn4+ cation does not take part in this process and remains on the 2b site. Moreover, the cross-over is also visible in the ratio of the lattice parameters c/(2a), showing a characteristic dependence on the chemical composition. The order parameter Q, the quantitative measure of Cu/BII disorder (BII = Zn and Mn), shows a distinct dependence on the Mn/(Mn + Zn) ratio. In Zn-rich Cu2(Zn1-xMnx)SnSe4 mixed crystals, the order parameter Q ∼ 0.7 and drops to Q ∼ 0 (complete Cu/BII disorder) in the compositional region 0.3 ≥ x ≥ 0.7. In Mn-rich Cu2(Zn1-xMnx)SnSe4 mixed crystals, adopting the stannite type structure, the order parameter reaches almost Q ∼ 1 (order). Thus, it can be concluded that only Mn-rich Cu2(Zn1-xMnx)SnSe4 mixed crystals do not show Cu/BII disorder. A similar trend of the dependence on the chemical composition of both Cu/BII-disorder and the band gap energy Eg in Cu2(Zn1-xMnx)SnSe4 mixed crystals was observed.

2.
Molecules ; 25(23)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260394

ABSTRACT

Eight mixed-ligand coordination networks, [Cd(2-aba)(NO3)(4-bphz)3/2]n·n(dmf) (1), [Cd(2-aba)2(4-bphz)]n·0.75n(dmf) (2), [Cd(seb)(4-bphz)]n·n(H2O) (3), [Cd(seb)(4-bpmhz)]n·n(H2O) (4), [Cd(hpa)(3-bphz)]n (5), [Zn(1,3-bdc)(3-bpmhz)]n·n(MeOH) (6), [Cd(1,3-bdc)(3-bpmhz)]n ·0.5n(H2O)·0.5n(EtOH) (7), and [Cd(NO3)2(3-bphz)(bpe)]n·n(3-bphz) (8) were obtained by interplay of cadmium nitrate tetrahydrate or zinc nitrate hexahydrate with 2-aminobenzenecarboxylic acid (H(2-aba)), three dicarboxylic acids, sebacic (decanedioic acid, H2seb), homophthalic (2-(carboxymethyl)benzoic acid, H2hpa), isophthalic (1,3-benzenedicarboxylic acid, H2(1,3-bdc)) acids, bis(4-pyridyl)ethane (bpe) and with four azine ligands, 1,2-bis(pyridin-4-ylmethylene)hydrazine (4-bphz), 1,2-bis(1-(pyridin-4-yl)ethylidene) hydrazine (4-bpmhz), 1,2-bis(pyridin-3-ylmethylene)hydrazine (3-bphz), and 1,2-bis(1-(pyridin-3-yl) ethylidene)hydrazine (3-bpmhz). Compounds 1 and 2 are 1D coordination polymers, while compounds 3-8 are 2D coordination polymers. All compounds were characterized by spectroscopic and X-ray diffraction methods of analysis. The solvent uptakes and stabilities to the guest evacuation were studied and compared for 1D and 2D coordination networks. The de-solvated forms revealed a significant increase of emission in comparison with the as-synthesized crystals.


Subject(s)
Azo Compounds/chemistry , Cadmium/chemistry , Carboxylic Acids/chemistry , Organometallic Compounds/chemistry , Zinc/chemistry , Adsorption , Anions/chemistry , Crystallography, X-Ray , Ligands , Luminescence , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Photoelectron Spectroscopy , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL