Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Proc Natl Acad Sci U S A ; 121(18): e2321494121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648491

ABSTRACT

In the absence of universal healthcare in the United States, federal programs of Medicaid and Medicare are vital to providing healthcare coverage for low-income households and elderly individuals, respectively. However, both programs are under threat, with either enacted or proposed retractions. Specifically, raising Medicare age eligibility and the addition of work requirements for Medicaid qualification have been proposed, while termination of continuous enrollment for Medicaid was recently effectuated. Here, we assess the potential impact on mortality and morbidity resulting from these policy changes. Our findings indicate that the policy change to Medicare would lead to over 17,000 additional deaths among individuals aged 65 to 67 and those to Medicaid would lead to more than 8,000 deaths among those under the age of 65. To illustrate the implications for morbidity, we further consider a case study among those people with diabetes who would be likely to lose their health insurance under the policy changes. We project that these insurance retractions would lead to the loss of coverage for over 700,000 individuals with diabetes, including more than 200,000 who rely on insulin.


Subject(s)
Medicaid , Medicare , United States , Humans , Medicaid/statistics & numerical data , Aged , Insurance Coverage/statistics & numerical data , Morbidity , Male , Mortality , Female , Insurance, Health/statistics & numerical data
2.
Proc Natl Acad Sci U S A ; 120(8): e2215424120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36780515

ABSTRACT

The Russian invasion of Ukraine on February 24, 2022, has displaced more than a quarter of the population. Assessing disease burdens among displaced people is instrumental in informing global public health and humanitarian aid efforts. We estimated the disease burden in Ukrainians displaced both within Ukraine and to other countries by combining a spatiotemporal model of forcible displacement with age- and gender-specific estimates of cardiovascular disease (CVD), diabetes, cancer, HIV, and tuberculosis (TB) in each of Ukraine's 629 raions (i.e., districts). Among displaced Ukrainians as of May 13, we estimated that more than 2.63 million have CVDs, at least 615,000 have diabetes, and over 98,500 have cancer. In addition, more than 86,000 forcibly displaced individuals are living with HIV, and approximately 13,500 have TB. We estimated that the disease prevalence among refugees was lower than the national disease prevalence before the invasion. Accounting for internal displacement and healthcare facilities impacted by the conflict, we estimated that the number of people per hospital has increased by more than two-fold in some areas. As regional healthcare systems come under increasing strain, these estimates can inform the allocation of critical resources under shifting disease burdens.


Subject(s)
Cardiovascular Diseases , HIV Infections , Refugees , Tuberculosis , Humans , Public Health , Delivery of Health Care , Tuberculosis/epidemiology , Cost of Illness , HIV Infections/epidemiology
3.
Ann Intern Med ; 177(5): 609-617, 2024 May.
Article in English | MEDLINE | ID: mdl-38527289

ABSTRACT

BACKGROUND: The U.S. Food and Drug Administration has proposed administering annual SARS-CoV-2 vaccines. OBJECTIVE: To evaluate the effectiveness of an annual SARS-CoV-2 vaccination campaign, quantify the health and economic benefits of a second dose provided to children younger than 2 years and adults aged 50 years or older, and optimize the timing of a second dose. DESIGN: An age-structured dynamic transmission model. SETTING: United States. PARTICIPANTS: A synthetic population reflecting demographics and contact patterns in the United States. INTERVENTION: Vaccination against SARS-CoV-2 with age-specific uptake similar to that of influenza vaccination. MEASUREMENTS: Incidence, hospitalizations, deaths, and direct health care cost. RESULTS: The optimal timing between the first and second dose delivered to children younger than 2 years and adults aged 50 years or older in an annual vaccination campaign was estimated to be 5 months. In direct comparison with a single-dose campaign, a second booster dose results in 123 869 fewer hospitalizations (95% uncertainty interval [UI], 121 994 to 125 742 fewer hospitalizations) and 5524 fewer deaths (95% UI, 5434 to 5613 fewer deaths), averting $3.63 billion (95% UI, $3.57 billion to $3.69 billion) in costs over a single year. LIMITATIONS: Population immunity is subject to degrees of immune evasion for emerging SARS-CoV-2 variants. The model was implemented in the absence of nonpharmaceutical interventions and preexisting vaccine-acquired immunity. CONCLUSION: The direct health care costs of SARS-CoV-2, particularly among adults aged 50 years or older, would be substantially reduced by administering a second dose 5 months after the initial dose. PRIMARY FUNDING SOURCE: Natural Sciences and Engineering Research Council of Canada, Notsew Orm Sands Foundation, National Institutes of Health, Centers for Disease Control and Prevention, and National Science Foundation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hospitalization , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/epidemiology , United States/epidemiology , Middle Aged , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/economics , Hospitalization/statistics & numerical data , Child, Preschool , Immunization Programs , Infant , Aged , Immunization, Secondary , Health Care Costs , Adult , Immunization Schedule
4.
Proc Natl Acad Sci U S A ; 119(25): e2200536119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35696578

ABSTRACT

The fragmented and inefficient healthcare system in the United States leads to many preventable deaths and unnecessary costs every year. During a pandemic, the lives saved and economic benefits of a single-payer universal healthcare system relative to the status quo would be even greater. For Americans who are uninsured and underinsured, financial barriers to COVID-19 care delayed diagnosis and exacerbated transmission. Concurrently, deaths beyond COVID-19 accrued from the background rate of uninsurance. Universal healthcare would alleviate the mortality caused by the confluence of these factors. To evaluate the repercussions of incomplete insurance coverage in 2020, we calculated the elevated mortality attributable to the loss of employer-sponsored insurance and to background rates of uninsurance, summing with the increased COVID-19 mortality due to low insurance coverage. Incorporating the demography of the uninsured with age-specific COVID-19 and nonpandemic mortality, we estimated that a single-payer universal healthcare system would have saved about 212,000 lives in 2020 alone. We also calculated that US$105.6 billion of medical expenses associated with COVID-19 hospitalization could have been averted by a single-payer universal healthcare system over the course of the pandemic. These economic benefits are in addition to US$438 billion expected to be saved by single-payer universal healthcare during a nonpandemic year.


Subject(s)
COVID-19 , Pandemics , Universal Health Care , COVID-19/prevention & control , Humans , Insurance Coverage , Medically Uninsured , Pandemics/prevention & control , United States/epidemiology
5.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34376550

ABSTRACT

Quantification of asymptomatic infections is fundamental for effective public health responses to the COVID-19 pandemic. Discrepancies regarding the extent of asymptomaticity have arisen from inconsistent terminology as well as conflation of index and secondary cases which biases toward lower asymptomaticity. We searched PubMed, Embase, Web of Science, and World Health Organization Global Research Database on COVID-19 between January 1, 2020 and April 2, 2021 to identify studies that reported silent infections at the time of testing, whether presymptomatic or asymptomatic. Index cases were removed to minimize representational bias that would result in overestimation of symptomaticity. By analyzing over 350 studies, we estimate that the percentage of infections that never developed clinical symptoms, and thus were truly asymptomatic, was 35.1% (95% CI: 30.7 to 39.9%). At the time of testing, 42.8% (95% prediction interval: 5.2 to 91.1%) of cases exhibited no symptoms, a group comprising both asymptomatic and presymptomatic infections. Asymptomaticity was significantly lower among the elderly, at 19.7% (95% CI: 12.7 to 29.4%) compared with children at 46.7% (95% CI: 32.0 to 62.0%). We also found that cases with comorbidities had significantly lower asymptomaticity compared to cases with no underlying medical conditions. Without proactive policies to detect asymptomatic infections, such as rapid contact tracing, prolonged efforts for pandemic control may be needed even in the presence of vaccination.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification
6.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161260

ABSTRACT

Individuals who are minoritized as a result of race, sexual identity, gender, or socioeconomic status experience a higher prevalence of many diseases. Understanding the biological processes that cause and maintain these socially driven health inequities is essential for addressing them. The gut microbiome is strongly shaped by host environments and affects host metabolic, immune, and neuroendocrine functions, making it an important pathway by which differences in experiences caused by social, political, and economic forces could contribute to health inequities. Nevertheless, few studies have directly integrated the gut microbiome into investigations of health inequities. Here, we argue that accounting for host-gut microbe interactions will improve understanding and management of health inequities, and that health policy must begin to consider the microbiome as an important pathway linking environments to population health.


Subject(s)
Gastrointestinal Microbiome , Health Status Disparities , Disease , Health , Humans , Mental Health , Publications
7.
Clin Infect Dis ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38035791

ABSTRACT

BACKGROUND: Two prefusion F protein-based vaccines, Arexvy and Abrysvo, have been authorized by the US Food and Drug Administration for protecting older adults against respiratory syncytial virus (RSV)-associated lower respiratory tract illness. We evaluated the health benefits and cost-effectiveness of these vaccines. METHODS: We developed a discrete-event simulation model, parameterized with the burden of RSV disease including outpatient care, hospitalization, and death for adults aged 60 years or older in the United States. Taking into account the costs associated with these RSV-related outcomes, we calculated the net monetary benefit using quality-adjusted life-year (QALY) gained as a measure of effectiveness and determined the range of price-per-dose (PPD) for Arexvy and Abrysvo vaccination programs to be cost-effective from a societal perspective. RESULTS: Using a willingness-to-pay of $95 000 per QALY gained, we found that vaccination programs could be cost-effective for a PPD up to $127 with Arexvy and $118 with Abrysvo over the first RSV season. Achieving an influenza-like vaccination coverage of 66% for the population of older adults in the United States, the budget impact of these programs at the maximum PPD ranged from $6.48 to $6.78 billion. If the benefits of vaccination extend to a second RSV season as reported in clinical trials, we estimated a maximum PPD of $235 for Arexvy and $245 for Abrysvo, with 2-year budget impacts of $11.78 and $12.25 billion, respectively. CONCLUSIONS: Vaccination of older adults would provide substantial direct health benefits by reducing outcomes associated with RSV-related illness in this population.

8.
Proc Natl Acad Sci U S A ; 117(48): 30104-30106, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33172993

ABSTRACT

Successful public health regimes for COVID-19 push below unity long-term regional Rt -the average number of secondary cases caused by an infectious individual. We use a susceptible-infectious-recovered (SIR) model for two coupled populations to make the conceptual point that asynchronous, variable local control, together with movement between populations, elevates long-term regional Rt , and cumulative cases, and may even prevent disease eradication that is otherwise possible. For effective pandemic mitigation strategies, it is critical that models encompass both spatiotemporal heterogeneity in transmission and movement.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Movement , Pandemics/prevention & control , Spatio-Temporal Analysis , Humans , Time Factors
9.
Proc Natl Acad Sci U S A ; 117(30): 17513-17515, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32632012

ABSTRACT

Since the emergence of coronavirus disease 2019 (COVID-19), unprecedented movement restrictions and social distancing measures have been implemented worldwide. The socioeconomic repercussions have fueled calls to lift these measures. In the absence of population-wide restrictions, isolation of infected individuals is key to curtailing transmission. However, the effectiveness of symptom-based isolation in preventing a resurgence depends on the extent of presymptomatic and asymptomatic transmission. We evaluate the contribution of presymptomatic and asymptomatic transmission based on recent individual-level data regarding infectiousness prior to symptom onset and the asymptomatic proportion among all infections. We found that the majority of incidences may be attributable to silent transmission from a combination of the presymptomatic stage and asymptomatic infections. Consequently, even if all symptomatic cases are isolated, a vast outbreak may nonetheless unfold. We further quantified the effect of isolating silent infections in addition to symptomatic cases, finding that over one-third of silent infections must be isolated to suppress a future outbreak below 1% of the population. Our results indicate that symptom-based isolation must be supplemented by rapid contact tracing and testing that identifies asymptomatic and presymptomatic cases, in order to safely lift current restrictions and minimize the risk of resurgence.


Subject(s)
Asymptomatic Infections/epidemiology , Betacoronavirus/isolation & purification , Contact Tracing/statistics & numerical data , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Infection Control/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Quarantine/statistics & numerical data , Adolescent , Adult , Aged , COVID-19 , Child , Child, Preschool , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult
10.
Proc Natl Acad Sci U S A ; 117(23): 13138-13144, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32457142

ABSTRACT

Regions with insufficient vaccination have hindered worldwide poliomyelitis eradication, as they are vulnerable to sporadic outbreaks through reintroduction of the disease. Despite Israel's having been declared polio-free in 1988, a routine sewage surveillance program detected polio in 2013. To curtail transmission, the Israel Ministry of Health launched a vaccine campaign to vaccinate children-who had only received the inactivated polio vaccine-with the oral polio vaccine (OPV). Determining the degree of prosocial motivation in vaccination behavior is challenging because vaccination typically provides direct benefits to the individual as well as indirect benefits to the community by curtailing transmission. However, the Israel OPV campaign provides a unique and excellent opportunity to quantify and model prosocial vaccination as its primary objective was to avert transmission. Using primary survey data and a game-theoretical model, we examine and quantify prosocial behavior during the OPV campaign. We found that the observed vaccination behavior in the Israeli OPV campaign is attributable to prosocial behavior and heterogeneous perceived risk of paralysis based on the individual's comprehension of the prosocial nature of the campaign. We also found that the benefit of increasing comprehension of the prosocial nature of the campaign would be limited if even 24% of the population acts primarily from self-interest, as greater vaccination coverage provides no personal utility to them. Our results suggest that to improve coverage, communication efforts should also focus on alleviating perceived fears surrounding the vaccine.


Subject(s)
Altruism , Disease Outbreaks/prevention & control , Mass Vaccination/psychology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/therapeutic use , Adolescent , Adult , Aged , Child , Game Theory , Humans , Immunization Programs/methods , Immunization Programs/statistics & numerical data , Israel/epidemiology , Mass Vaccination/statistics & numerical data , Middle Aged , Models, Neurological , Poliomyelitis/epidemiology , Poliomyelitis/virology , Poliovirus/isolation & purification , Poliovirus Vaccine, Inactivated/therapeutic use , Sewage/virology , Surveys and Questionnaires , Vaccination Coverage/statistics & numerical data , Young Adult
11.
Proc Natl Acad Sci U S A ; 117(13): 7504-7509, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32170017

ABSTRACT

The novel coronavirus outbreak (COVID-19) in mainland China has rapidly spread across the globe. Within 2 mo since the outbreak was first reported on December 31, 2019, a total of 566 Severe Acute Respiratory Syndrome (SARS CoV-2) cases have been confirmed in 26 other countries. Travel restrictions and border control measures have been enforced in China and other countries to limit the spread of the outbreak. We estimate the impact of these control measures and investigate the role of the airport travel network on the global spread of the COVID-19 outbreak. Our results show that the daily risk of exporting at least a single SARS CoV-2 case from mainland China via international travel exceeded 95% on January 13, 2020. We found that 779 cases (95% CI: 632 to 967) would have been exported by February 15, 2020 without any border or travel restrictions and that the travel lockdowns enforced by the Chinese government averted 70.5% (95% CI: 68.8 to 72.0%) of these cases. In addition, during the first three and a half weeks of implementation, the travel restrictions decreased the daily rate of exportation by 81.3% (95% CI: 80.5 to 82.1%), on average. At this early stage of the epidemic, reduction in the rate of exportation could delay the importation of cases into cities unaffected by the COVID-19 outbreak, buying time to coordinate an appropriate public health response.


Subject(s)
Betacoronavirus , Communicable Disease Control/legislation & jurisprudence , Communicable Disease Control/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Epidemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Travel , COVID-19 , China/epidemiology , Coronavirus Infections/prevention & control , Global Health , Humans , Incidence , Internationality , Likelihood Functions , Mass Screening , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Public Health , Risk , SARS-CoV-2
12.
Proc Natl Acad Sci U S A ; 117(16): 9122-9126, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32245814

ABSTRACT

In the wake of community coronavirus disease 2019 (COVID-19) transmission in the United States, there is a growing public health concern regarding the adequacy of resources to treat infected cases. Hospital beds, intensive care units (ICUs), and ventilators are vital for the treatment of patients with severe illness. To project the timing of the outbreak peak and the number of ICU beds required at peak, we simulated a COVID-19 outbreak parameterized with the US population demographics. In scenario analyses, we varied the delay from symptom onset to self-isolation, the proportion of symptomatic individuals practicing self-isolation, and the basic reproduction number R0 Without self-isolation, when R0 = 2.5, treatment of critically ill individuals at the outbreak peak would require 3.8 times more ICU beds than exist in the United States. Self-isolation by 20% of cases 24 h after symptom onset would delay and flatten the outbreak trajectory, reducing the number of ICU beds needed at the peak by 48.4% (interquartile range 46.4-50.3%), although still exceeding existing capacity. When R0 = 2, twice as many ICU beds would be required at the peak of outbreak in the absence of self-isolation. In this scenario, the proportional impact of self-isolation within 24 h on reducing the peak number of ICU beds is substantially higher at 73.5% (interquartile range 71.4-75.3%). Our estimates underscore the inadequacy of critical care capacity to handle the burgeoning outbreak. Policies that encourage self-isolation, such as paid sick leave, may delay the epidemic peak, giving a window of time that could facilitate emergency mobilization to expand hospital capacity.


Subject(s)
Coronavirus Infections , Disease Outbreaks , Hospital Bed Capacity , Hospitals , Intensive Care Units , Pandemics , Patient Acceptance of Health Care , Pneumonia, Viral , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Disease Outbreaks/statistics & numerical data , Forecasting , Hospitals/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Models, Theoretical , Patient Acceptance of Health Care/statistics & numerical data , Patient Isolation , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , SARS-CoV-2 , Time Factors , United States
13.
Proc Natl Acad Sci U S A ; 116(48): 24366-24372, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31636188

ABSTRACT

The interplay between civil unrest and disease transmission is not well understood. Violence targeting healthcare workers and Ebola treatment centers in the Democratic Republic of the Congo (DRC) has been thwarting the case isolation, treatment, and vaccination efforts. The extent to which conflict impedes public health response and contributes to incidence has not previously been evaluated. We construct a timeline of conflict events throughout the course of the epidemic and provide an ethnographic appraisal of the local conditions that preceded and followed conflict events. Informed by temporal incidence and conflict data as well as the ethnographic evidence, we developed a model of Ebola transmission and control to assess the impact of conflict on the epidemic in the eastern DRC from April 30, 2018, to June 23, 2019. We found that both the rapidity of case isolation and the population-level effectiveness of vaccination varied notably as a result of preceding unrest and subsequent impact of conflict events. Furthermore, conflict events were found to reverse an otherwise declining phase of the epidemic trajectory. Our model framework can be extended to other infectious diseases in the same and other regions of the world experiencing conflict and violence.


Subject(s)
Armed Conflicts , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Vaccination/statistics & numerical data , Democratic Republic of the Congo , Disease Outbreaks , Health Personnel , Hemorrhagic Fever, Ebola/therapy , Humans , Incidence
14.
Proc Natl Acad Sci U S A ; 116(41): 20786-20792, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548402

ABSTRACT

The efficacy of influenza vaccines, currently at 44%, is limited by the rapid antigenic evolution of the virus and a manufacturing process that can lead to vaccine mismatch. The National Institute of Allergy and Infectious Diseases (NIAID) recently identified the development of a universal influenza vaccine with an efficacy of at least 75% as a high scientific priority. The US Congress approved $130 million funding for the 2019 fiscal year to support the development of a universal vaccine, and another $1 billion over 5 y has been proposed in the Flu Vaccine Act. Using a model of influenza transmission, we evaluated the population-level impacts of universal influenza vaccines distributed according to empirical age-specific coverage at multiple scales in the United States. We estimate that replacing just 10% of typical seasonal vaccines with 75% efficacious universal vaccines would avert ∼5.3 million cases, 81,000 hospitalizations, and 6,300 influenza-related deaths per year. This would prevent over $1.1 billion in direct health care costs compared to a typical season, based on average data from the 2010-11 to 2018-19 seasons. A complete replacement of seasonal vaccines with universal vaccines is projected to prevent 17 million cases, 251,000 hospitalizations, 19,500 deaths, and $3.5 billion in direct health care costs. States with high per-hospitalization medical expenses along with a large proportion of elderly residents are expected to receive the maximum economic benefit. Replacing even a fraction of seasonal vaccines with universal vaccines justifies the substantial cost of vaccine development.


Subject(s)
Cost-Benefit Analysis , Health Care Costs/statistics & numerical data , Hospitalization/economics , Influenza Vaccines/economics , Influenza, Human/economics , Influenza, Human/prevention & control , Vaccination/economics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Influenza A virus/isolation & purification , Influenza Vaccines/therapeutic use , Influenza, Human/epidemiology , Male , Middle Aged , Seasons , United States/epidemiology , Vaccination/methods , Young Adult
15.
Proc Natl Acad Sci U S A ; 116(20): 10178-10183, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31036657

ABSTRACT

Following the April 2018 reemergence of Ebola in a rural region of the Democratic Republic of the Congo (DRC), the virus spread to an urban center by early May. Within 2 wk of the first case confirmation, a vaccination campaign was initiated in which 3,017 doses were administered to contacts of cases and frontline healthcare workers. To evaluate the spatial dynamics of Ebola transmission and quantify the impact of vaccination, we developed a geographically explicit model that incorporates high-resolution data on poverty and population density. We found that while Ebola risk was concentrated around sites initially reporting infections, longer-range dissemination also posed a risk to areas with high population density and poverty. We estimate that the vaccination program contracted the geographical area at risk for Ebola by up to 70.4% and reduced the level of risk within that region by up to 70.1%. The early implementation of vaccination was critical. A delay of even 1 wk would have reduced these effects to 33.3 and 44.8%, respectively. These results underscore the importance of the rapid deployment of Ebola vaccines during emerging outbreaks to containing transmission and preventing global spread. The spatiotemporal framework developed here provides a tool for identifying high-risk regions, in which surveillance can be intensified and preemptive control can be implemented during future outbreaks.


Subject(s)
Ebola Vaccines , Hemorrhagic Fever, Ebola/prevention & control , Vaccination/statistics & numerical data , Democratic Republic of the Congo , Humans , Time Factors
16.
Clin Infect Dis ; 73(12): 2257-2264, 2021 12 16.
Article in English | MEDLINE | ID: mdl-33515252

ABSTRACT

BACKGROUND: Global vaccine development efforts have been accelerated in response to the devastating coronavirus disease 2019 (COVID-19) pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States. METHODS: We developed an agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, whereas children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection and specified 10% preexisting population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current nonpharmaceutical interventions in the United States. RESULTS: Vaccination reduced the overall attack rate to 4.6% (95% credible interval [CrI]: 4.3%-5.0%) from 9.0% (95% CrI: 8.4%-9.4%) without vaccination, over 300 days. The highest relative reduction (54%-62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-intensive care unit (ICU) hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3%-66.7%), 65.6% (95% CrI: 62.2%-68.6%), and 69.3% (95% CrI: 65.5%-73.1%), respectively, across the same period. CONCLUSIONS: Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with nonpharmaceutical interventions is essential to achieve this impact.


Subject(s)
COVID-19 , Adolescent , COVID-19 Vaccines , Child , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2 , United States/epidemiology , Vaccination , Vaccine Development , Vaccine Efficacy
17.
Lancet ; 395(10223): 524-533, 2020 02 15.
Article in English | MEDLINE | ID: mdl-32061298

ABSTRACT

Although health care expenditure per capita is higher in the USA than in any other country, more than 37 million Americans do not have health insurance, and 41 million more have inadequate access to care. Efforts are ongoing to repeal the Affordable Care Act which would exacerbate health-care inequities. By contrast, a universal system, such as that proposed in the Medicare for All Act, has the potential to transform the availability and efficiency of American health-care services. Taking into account both the costs of coverage expansion and the savings that would be achieved through the Medicare for All Act, we calculate that a single-payer, universal health-care system is likely to lead to a 13% savings in national health-care expenditure, equivalent to more than US$450 billion annually (based on the value of the US$ in 2017). The entire system could be funded with less financial outlay than is incurred by employers and households paying for health-care premiums combined with existing government allocations. This shift to single-payer health care would provide the greatest relief to lower-income households. Furthermore, we estimate that ensuring health-care access for all Americans would save more than 68 000 lives and 1·73 million life-years every year compared with the status quo.


Subject(s)
Delivery of Health Care/organization & administration , Cost Savings/methods , Delivery of Health Care/economics , Drug Costs/statistics & numerical data , Health Expenditures/statistics & numerical data , Health Services Accessibility/economics , Health Services Accessibility/organization & administration , Humans , Medicare/economics , Patient Protection and Affordable Care Act , Prognosis , United States , Universal Health Care
18.
Proc Natl Acad Sci U S A ; 115(20): 5151-5156, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29712866

ABSTRACT

The efficacy of influenza vaccines varies from one year to the next, with efficacy during the 2017-2018 season anticipated to be lower than usual. However, the impact of low-efficacy vaccines at the population level and their optimal age-specific distribution have yet to be ascertained. Applying an optimization algorithm to a mathematical model of influenza transmission and vaccination in the United States, we determined the optimal age-specific uptake of low-efficacy vaccine that would minimize incidence, hospitalization, mortality, and disability-adjusted life-years (DALYs), respectively. We found that even relatively low-efficacy influenza vaccines can be highly impactful, particularly when vaccine uptake is optimally distributed across age groups. As vaccine efficacy declines, the optimal distribution of vaccine uptake shifts toward the elderly to minimize mortality and DALYs. Health practitioner encouragement and concerted recruitment efforts are required to achieve optimal coverage among target age groups, thereby minimizing influenza morbidity and mortality for the population overall.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/standards , Influenza, Human/economics , Influenza, Human/prevention & control , Resource Allocation/standards , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , Child , Child, Preschool , Hospitalization/statistics & numerical data , Humans , Incidence , Infant , Infant, Newborn , Influenza Vaccines/administration & dosage , Influenza, Human/epidemiology , Middle Aged , Morbidity , Population Surveillance , Resource Allocation/economics , Resource Allocation/legislation & jurisprudence , Seasons , Survival Rate , United States/epidemiology , Young Adult
19.
Mar Policy ; 131: 1-18, 2021 Sep.
Article in English | MEDLINE | ID: mdl-37850151

ABSTRACT

Although great progress has been made to advance the scientific understanding of oil spills, tools for integrated assessment modeling of the long-term impacts on ecosystems, socioeconomics and human health are lacking. The objective of this study was to develop a conceptual framework that could be used to answer stakeholder questions about oil spill impacts and to identify knowledge gaps and future integration priorities. The framework was initially separated into four knowledge domains (ocean environment, biological ecosystems, socioeconomics, and human health) whose interactions were explored by gathering stakeholder questions through public engagement, assimilating expert input about existing models, and consolidating information through a system dynamics approach. This synthesis resulted in a causal loop diagram from which the interconnectivity of the system could be visualized. Results of this analysis indicate that the system naturally separates into two tiers, ocean environment and biological ecosystems versus socioeconomics and human health. As a result, ocean environment and ecosystem models could be used to provide input to explore human health and socioeconomic variables in hypothetical scenarios. At decadal-plus time scales, the analysis emphasized that human domains influence the natural domains through changes in oil-spill related laws and regulations. Although data gaps were identified in all four model domains, the socioeconomics and human health domains are the least established. Considerable future work is needed to address research gaps and to create fully coupled quantitative integrative assessment models that can be used in strategic decision-making that will optimize recoveries from future large oil spills.

20.
CMAJ ; 192(19): E489-E496, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32269020

ABSTRACT

BACKGROUND: Increasing numbers of coronavirus disease 2019 (COVID-19) cases in Canada may create substantial demand for hospital admission and critical care. We evaluated the extent to which self-isolation of mildly ill people delays the peak of outbreaks and reduces the need for this care in each Canadian province. METHODS: We developed a computational model and simulated scenarios for COVID-19 outbreaks within each province. Using estimates of COVID-19 characteristics, we projected the hospital and intensive care unit (ICU) bed requirements without self-isolation, assuming an average number of 2.5 secondary cases, and compared scenarios in which different proportions of mildly ill people practised self-isolation 24 hours after symptom onset. RESULTS: Without self-isolation, the peak of outbreaks would occur in the first half of June, and an average of 569 ICU bed days per 10 000 population would be needed. When 20% of cases practised self-isolation, the peak was delayed by 2-4 weeks, and ICU bed requirement was reduced by 23.5% compared with no self-isolation. Increasing self-isolation to 40% reduced ICU use by 53.6% and delayed the peak of infection by an additional 2-4 weeks. Assuming current ICU bed occupancy rates above 80% and self-isolation of 40%, demand would still exceed available (unoccupied) ICU bed capacity. INTERPRETATION: At the peak of COVID-19 outbreaks, the need for ICU beds will exceed the total number of ICU beds even with self-isolation at 40%. Our results show the coming challenge for the health care system in Canada and the potential role of self-isolation in reducing demand for hospital-based and ICU care.


Subject(s)
Bed Occupancy/statistics & numerical data , Coronavirus Infections/therapy , Critical Care/statistics & numerical data , Hospital Bed Capacity/statistics & numerical data , Pneumonia, Viral/therapy , COVID-19 , Canada/epidemiology , Coronavirus Infections/epidemiology , Disease Outbreaks , Health Services Needs and Demand/statistics & numerical data , Humans , Models, Statistical , Pandemics , Pneumonia, Viral/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL