Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Molecules ; 26(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34443423

ABSTRACT

Chronic liver inflammation has become a major global health concern. In the absence of clinical surrogate markers to diagnose inflammatory liver disease, the intervention with effective drugs in modern medicine tends to be late. In Sri Lanka, traditional medical practitioners prescribe herbal preparations from Osbeckia octandra for the prevention and treatment of liver disorders. To test the efficacy of such treatments, we have administered thioacetamide (TAA) to male Wistar rats to induce chronic liver damage (disease control; DC) and examined how various leaf extracts: crude leaf suspension (CLS), boiled leaf extract (BLE), sonicated leaf extract (SLE), methanol leaf extract (MLE) and hexane leaf extract (HLE) of O. octandra ameliorate TAA-induced liver disease. The CLS, BLE and SLE treatments in cirrhotic rats significantly attenuated disease-related changes, such as liver weight and hepato-enzymes. The mRNA levels of Tnf-α were significantly decreased by 3.6, 10 and 3.9 times in CLS, BLE and SLE compared to DC. The same treatments resulted in significantly lower (19.5, 4.2 and 2.4 times) α-Sma levels compared to DC. In addition, Tgf-ß1 and Vegf-R2 mRNA expressions were significantly lower with the treatments. Moreover, BLE expressed a strong anti-angiogenic effect. We conclude that CLS, BLE and SLE from O. octandra have potent hepatic anti-fibrotic effects in TAA-induced liver cirrhosis.


Subject(s)
Liver Cirrhosis, Experimental/drug therapy , Melastomataceae/chemistry , Neovascularization, Pathologic/drug therapy , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Cytokines/genetics , Cytokines/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation Mediators/metabolism , Liver/enzymology , Liver/pathology , Liver Cirrhosis, Experimental/blood , Neovascularization, Pathologic/blood , Organ Size/drug effects , Plant Extracts/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thioacetamide , Up-Regulation/drug effects , Water , Weight Loss/drug effects
2.
Biochem Biophys Res Commun ; 527(1): 42-48, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32446389

ABSTRACT

The fungicide Mancozeb is an endocrine-disrupting chemical and the mode of action of Mancozeb on embryo implantation is largely unknown. Mancozeb (1 and 3 µg/ml) significantly reduced Jeg-3 trophoblastic spheroids attachment to endometrial epithelial Ishikawa cells. Mancozeb treatment from gestation day (GD) 1 to GD8 or from GD4 to GD8 significantly lowered the number of implantation sites with higher incidence of morphological abnormalities in the reproductive tissues. However, these were not seen in the treatment from GD1 to GD4. Mancozeb at 30 mg/kg BW/d did not alter the expression of p53, COX-2, or PGFS transcripts in the uterus, but down-regulated the PGES transcript and protein. Mancozeb treatment in human endometrial stromal cells did not alter the decidualization response, but the morphological transformation was impaired. Taken together, exposure to Mancozeb affected embryo implantation probably through the modulation of decidualization and to delineate the exact mode of action needs further investigations.


Subject(s)
Embryo Implantation/drug effects , Fungicides, Industrial/adverse effects , Maneb/adverse effects , Zineb/adverse effects , Animals , Cell Line , Female , Fungicides, Industrial/administration & dosage , Gene Expression Regulation, Developmental/drug effects , Humans , Male , Maneb/administration & dosage , Mice, Inbred ICR , Zineb/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL