Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37895916

ABSTRACT

In the development of bioanalytical LC-MS methods for the determination of drugs in plasma samples in a clinical setting, adequate sample preparation is of utmost importance. The main goals are to achieve the selective extraction of the analytes of interest and attain thorough matrix removal while retaining acceptable ecological properties, cost-effectiveness, and high throughput. Solid-phase extraction (SPE) offers a versatile range of options, from the selection of an appropriate sorbent to the optimisation of the washing and elution conditions. In this work, the first SPE method for the simultaneous extraction of six anticancer drugs used in novel therapeutic combinations for advanced breast cancer treatment-palbociclib, ribociclib, abemaciclib, anastrozole, letrozole, and fulvestrant-was developed. The following sorbent chemistries were tested: octylsilyl (C8), octadecylsilyl (C18), hydrophilic-lipophilic balance (HLB), mixed-mode cation-exchange (MCX and X-C), and mixed-mode weak cation-exchange (WCX), with different corresponding elution solvents. The samples were analysed using LC-MS/MS, with a phenyl column (150 × 4.6 mm, 2.5 µm). The best extraction recoveries (≥92.3%) of all analytes were obtained with the C8 phase, using methanol as the elution solvent. The optimised method was validated in the clinically relevant ranges, showing adequate precision (inter-day RSD ≤ 14.3%) and accuracy (inter-day bias -12.7-13.5%). Finally, its applicability was successfully proven by the analysis of samples from breast cancer patients.

2.
Cell Chem Biol ; 27(11): 1441-1451.e7, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32726587

ABSTRACT

Protein-protein interactions (PPIs) govern intracellular life, and identification of PPI inhibitors is challenging. Roadblocks in assay development stemming from weak binding affinities of natural PPIs impede progress in this field. We postulated that enhancing binding affinity of natural PPIs via protein engineering will aid assay development and hit discovery. This proof-of-principle study targets PPI between linear ubiquitin chains and NEMO UBAN domain, which activates NF-κB signaling. Using phage display, we generated ubiquitin variants that bind to the functional UBAN epitope with high affinity, act as competitive inhibitors, and structurally maintain the existing PPI interface. When utilized in assay development, variants enable generation of robust cell-based assays for chemical screening. Top compounds identified using this approach directly bind to UBAN and dampen NF-κB signaling. This study illustrates advantages of integrating protein engineering and chemical screening in hit identification, a development that we anticipate will have wide application in drug discovery.


Subject(s)
Biological Products/pharmacology , Drug Discovery , NF-kappa B/antagonists & inhibitors , Protein Engineering , Ubiquitin/antagonists & inhibitors , Biological Products/chemistry , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Molecular Structure , NF-kappa B/chemistry , NF-kappa B/metabolism , Protein Binding/drug effects , Signal Transduction/drug effects , Structure-Activity Relationship , Ubiquitin/chemistry , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL