Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Biol Reprod ; 102(5): 1122-1133, 2020 04 24.
Article in English | MEDLINE | ID: mdl-31995151

ABSTRACT

Gonadotropin-releasing hormone agonists (GnRHa) are used as an alternative to human chorionic gonadotropin (hCG) to trigger ovulation and decrease the risk of ovarian hyperstimulation syndrome. GnRHa is less potent at inducing ovarian vascular endothelial growth factor (VEGF), but may also affect endometrial angiogenesis and early placental development. In this study, we explore the effect of superovulation on endometrial angiogenesis during critical periods of gestation in a mouse model. We assigned female mice to three groups: natural mating or mating following injection with equine chorionic gonadotropin and trigger with GnRHa or hCG trigger. Females were killed prior to implantation (E3.5), post-implantation (E7.5), and at midgestation (E10.5), and maternal serum, uterus, and ovaries were collected. During peri-implantation, endometrial Vegfr1 and Vegfr2 mRNA were significantly increased in the GnRHa trigger group (P < 0.02) relative to the hCG group. Vegfr1 is highly expressed in the endometrial lining and secretory glands immediately prior to implantation. At E7.5, the ectoplacental cone expression of Vegfa and its receptor, Vegfr2, was significantly higher in the hCG trigger group compared to the GnRHa group (P < 0.05). Soluble VEGFR1 and free VEGFA were much higher in the serum of mice exposed to the hCG trigger compared to GnRHa group. At midgestation, there was significantly more local Vegfa expression in the placenta of mice triggered with hCG. GnRHa and hCG triggers differentially disrupt the endometrial expression of key angiogenic factors during critical periods of mouse gestation. These results may have significant implications for placental development and neonatal outcomes following human in vitro fertilization.


Subject(s)
Chorionic Gonadotropin/pharmacology , Gonadotropins, Equine/pharmacology , Leuprolide/pharmacology , Animals , Female , Gene Expression Regulation/drug effects , Gonadotropin-Releasing Hormone/metabolism , Gonadotropins, Equine/administration & dosage , Male , Mice , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Superovulation , Uterus/drug effects , Uterus/metabolism , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
2.
bioRxiv ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38370683

ABSTRACT

New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. We isolated 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target. HumAb 826827 blocked the invasion of human erythrocytes using Pv clinical isolates and inhibited sporozoite invasion of human hepatocytes in vitro (IC50 of 0.3 to 3.7 ug/mL). It also significantly reduced liver infection of chimeric FRG humHep mice in vivo. The crystal structure of rPvAMA1 bound to 826827 shows that 826827 partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. We have isolated a potent humAb that is isolate transcendent, blocks both pre erythrocytic and blood stage infection, and could be a new therapy for Pv.

3.
Reprod Sci ; 26(4): 487-495, 2019 04.
Article in English | MEDLINE | ID: mdl-29788824

ABSTRACT

OBJECTIVE: Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor whose phosphorylation increases energy production. We sought to evaluate the placenta-specific effect of AMPK activation on the handling of nutrients required for fetal development. METHODS: Explants were isolated from term placenta of 29 women (pregravid body mass index: 29.1 ± 9.9 kg/m2) and incubated for 24 hours with 0 to 100 µmol/L resveratrol or 0 to 1 mmol/L of 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR). Following treatment, uptake and metabolism of radiolabeled fatty acids and glucose were measured. Phosphorylation of AMPK was measured by Western blotting. Adenosine diphosphate (ATP) production was assessed using the mitochondrial ToxGlo assay kit. P < .05 was considered statistically significant. RESULTS: Resveratrol and AICAR increased AMPK phosphorylation in human placental explants. Exposure to resveratrol decreased the uptake of polyunsaturated fatty acids, arachidonic acid, and docosahexaenoic acid at 100 µmol/L ( P < .0001). Fatty acid oxidation was decreased by 100 µmol/L ( P < .05) resveratrol, while esterification was unchanged. Resveratrol decreased glucose uptake at the 50 and 100 µmol/L doses ( P < .05). Glycolysis was not significantly affected. AICAR had similar effects, decreasing fatty acid uptake and glycolysis ( P < .05). Production of ATP declined at doses found to decrease nutrient metabolism ( P < .05). CONCLUSIONS: Activation of AMPK in the human placenta leads to global downregulation of metabolism, with mitotoxicity induced at the doses of resveratrol and AICAR used to activate AMPK. Although activation of this pathway has positive metabolic effects on other tissues, in the placenta there is potential for harm, as inadequate placental delivery of critical nutrients may compromise fetal development.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Mitochondria/metabolism , Placenta/metabolism , Adult , Aminoimidazole Carboxamide/administration & dosage , Aminoimidazole Carboxamide/analogs & derivatives , Enzyme Inhibitors/administration & dosage , Fatty Acids/metabolism , Female , Glucose/metabolism , Humans , Phosphorylation , Pregnancy , Resveratrol/administration & dosage , Ribonucleotides/administration & dosage , Trophoblasts/metabolism
4.
Reprod Sci ; 25(2): 214-221, 2018 02.
Article in English | MEDLINE | ID: mdl-28671036

ABSTRACT

Uterine quiescence during pregnancy is maintained by progesterone primarily via signaling mediated by the type-B progesterone receptor (PR-B) in myometrial cells. Withdrawal of PR-B-mediated progesterone activity is a principal trigger for labor. One mechanism for PR-B withdrawal is by inhibition of its activity by the type-A PR (PR-A) isoform in myometrial cells. We hypothesized that human parturition involves hormonal interactions that induce the capacity for PR-A to inhibit PR-B in myometrial cells and that pro-inflammatory cytokines are major regulators of this process. We tested this hypothesis in an immortalized human myometrial cell line, hTERT-HMA/B, in which levels of PR-A and PR-B can be experimentally controlled. We found that the capacity for PR-A to repress PR-B, assessed by activity of a transiently transfected reporter DNA controlled by the progesterone response element, and expression of FK506 binding protein 5 ( FKBP5) an endogenous PR-B responsive gene, was increased by serum supplementation and interleukin-1ß. In pregnant uterus, FKBP5 was detected exclusively in myometrial cells and its expression decreased with advancing gestation and in association with the onset of labor at term. These findings suggest that in myometrial cells the repressive activity of PR-A on PR-B increases with advancing gestation and is induced by pro-inflammatory cytokines. This may be a key mechanism linking inflammation with the onset of labor.


Subject(s)
Myometrium/metabolism , Parturition/metabolism , Protein Isoforms/metabolism , Receptors, Progesterone/metabolism , Cell Line , Female , Humans , Labor, Obstetric , Pregnancy , Protein Isoforms/genetics , Receptors, Progesterone/genetics , Uterus/metabolism
5.
Endocrinology ; 158(1): 158-169, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27886516

ABSTRACT

The steroid hormone progesterone acting via the nuclear progesterone receptor (PR) isoforms, progesterone receptor A (PR-A) and progesterone receptor B (PR-B), is essential for the maintenance of uterine quiescence during pregnancy. Inhibition of PR signaling augments uterine contractility and induces labor. Human parturition is thought to be triggered by modulation of PR signaling in myometrial cells to induce a functional progesterone withdrawal. One mechanism for functional progesterone withdrawal is increased abundance of PR-A, which decreases progesterone responsiveness by inhibiting the transcriptional activity of PR-B. Human parturition also involves tissue-level inflammation within the myometrium. This study examined the control of PR-A abundance and transrepressive activity in myometrial cells and the role of the inflammatory stimuli in the form of interleukin-1ß (IL-1ß) and lipopolysaccharide (LPS) in these processes. We found that abundance of PR-A was markedly increased by progesterone and by exposure to IL-1ß and LPS via posttranslational mechanisms involving increased PR-A protein stability. In contrast, progesterone decreased abundance of PR-B by increasing its rate of degradation. Together, progesterone and proinflammatory stimuli induced a PR-A-dominant state in myometrial cells similar to that observed in term laboring myometrium. IL-1ß and LPS also increased the capacity for PR-A to inhibit the transcriptional activity of PR-B. Taken together, our data suggest that proinflammatory stimuli increase the steady-state levels of PR-A and its transrepressive activity in myometrial cells and support the hypothesis that tissue-level inflammation triggers parturition by inducing PR-A-mediated functional progesterone withdrawal.


Subject(s)
Inflammation/metabolism , Myometrium/metabolism , Receptors, Progesterone/metabolism , Uterine Contraction , Cell Line , Female , Humans , Myometrium/cytology , Pregnancy , Progesterone/metabolism , Tissue Culture Techniques
6.
J Clin Cell Immunol ; 7(3)2016 Jun.
Article in English | MEDLINE | ID: mdl-27398263

ABSTRACT

We reported at the Keynote Forum of Immunology Summit-2015 that recombinant human (rh) TNF-α or rhIL-6 stimulated production of matrix metalloproteinase-9 (MMP-9) in the T/C28a2 and C-28/I2 human immortalized chondrocyte cell lines. Furthermore, we reported that tocilizumab (TCZ), a fully humanized monoclonal antibody which neutralizes IL-6-mediated signaling, inhibited the rhIL-6-mediated increase in the production of MMP-9. IL-6 is also a known activator of the JAK/STAT signaling pathway. In that regard, we evaluated the effect of rhIL-6 on total and phosphorylated Signal Transducer and Activator of Transcription by these chondrocyte lines which showed that whereas STAT3 was constitutively phosphorylated in T/C28a2 chondrocytes, rhIL-6 activated STAT3 in C-28/I2 chondrocytes. The finding that rhIL-6 increased the production of MMP-9 by human immortalized chondrocyte cell lines may have important implications with respect to the destruction of articular cartilage in rheumatoid arthritis and osteoarthritis. Thus, the markedly elevated level of IL-6 in rheumatoid arthritis and osteoarthritis sera and synovial fluid would be expected to generate significant MMP-9 to cause the degradation of articular cartilage extracellular matrix proteins. The finding that TCZ suppressed rhIL-6-mediated MMP-9 production suggests that TCZ, currently employed in the medical therapy of rheumatoid arthritis, could be considered as a drug for osteoarthritis.

7.
Endocrinology ; 157(11): 4434-4445, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27653036

ABSTRACT

The hypothesis that phosphorylation of progesterone receptor (PR) isoforms, PR-A and PR-B, in myometrial cells affects progesterone action in the context of human parturition was tested. Immunodetection of phosphoserine (pSer) PR forms in term myometrium revealed that the onset of labor is associated with increased phosphorylation of PR-A at serine-345 (pSer345-PRA) and that pSer345-PRA localized to the nucleus of myometrial cells. In explant cultures of term myometrium generation of pSer345-PRA was induced by interleukin-1ß and dependent on progesterone, suggesting that pSer345-PRA generation is induced by a proinflammatory stimulus. In the hTERT-HMA/B human myometrial cell line, abundance of pSer345-PRA was induced by progesterone in a dose- (EC50 ∼1 nM) and time-dependent manner. Prevention of pSer345 (by site-directed mutagenesis) abolished the capacity for PR-A to inhibit anti-inflammatory actions of progesterone mediated by PR-B but had no effect on the transrepressive activity of PR-A at a canonical progesterone response element. Taken together, the data show that human parturition involves the phosphorylation of PR-A at serine-345 in myometrial cells and that this process is ligand dependent and induced by a proinflammatory stimulus. We also found that in myometrial cells, pSer345 activates the capacity for PR-A to inhibit antiinflammatory actions of progesterone mediated by PR-B. Phosphorylation of PR-A at serine-345 may be an important functional link between tissue-level inflammation and PR-A-mediated functional progesterone withdrawal to trigger parturition.


Subject(s)
Myometrium/metabolism , Parturition/physiology , Receptors, Progesterone/metabolism , Serine/metabolism , Cell Line , Female , Humans , Immunohistochemistry , In Vitro Techniques , Multiplex Polymerase Chain Reaction , Mutagenesis, Site-Directed , Parturition/genetics , Phosphorylation/drug effects , Progesterone/pharmacology , Receptors, Progesterone/chemistry , Serine/chemistry
8.
Article in English | MEDLINE | ID: mdl-26855970

ABSTRACT

BACKGROUND: Activation of the SAPK/MAPK signaling pathway by pro-inflammatory cytokines is known to induce apoptosis in cultured articular chondrocytes. C-28/I2, an immortalized human juvenile chondrocyte cell line was employed to determine the extent to which recombinant human (rh) forms of the pro-inflammatory cytokines, tumor necrosis factor-α (rhTNF-α,), interleukin-6 (rhIL-6) and oncostatin M (rhOSM) induced apoptosis. METHODS: The induction of apoptosis in the presence or absence of these cytokines was measured by the DAPI/TUNEL assay, by whether or not pro-caspase-3 was activated and by the extent to which poly-ADP-ribose polymerase (PARP) was degraded. FINDINGS: Only rhTNF-α, and rhIL-6 significantly increased apoptosis in C-28/I2 chondrocytes, although rhOSM exhibited a strong trend (p=0.067) towards increasing the frequency of apoptotic chondrocytes. The number of apoptotic C28/I2 chondrocytes was significantly increased (p=1.3 × 10-5) by the combination of rhTNF-α and U0126 (10 µM) compared to rhTNF-α alone. However apoptosis was not further increased by combining rhIL-6 with U0126. The LI-COR® western blot system showed that U0126 (10 µM) inhibited the phosphorylation of extracellular signal-regulated kinase-2 (p-ERK2) by phorbol myristate acetate-treated immortalized myometrial cells, U0126 (10 µM) did not alter total U-ERK2. Western blot analysis also revealed that the increased frequency of apoptotic C-28/I2 chondrocytes induced by rhTNF-α and rhOSM, but not rhIL-6, was associated with PARP degradation. However, none of the cytokines resulted in pro-caspase-3 activation. CONCLUSION: These results showed that rhTNF-α and rhIL-6 were strong inducers of apoptosis in the immortalized C-28/I2 human chondrocyte cell line. They also suggested that inhibiting ERK2 phosphorylation via U0126-mediated inhibition of MEK1/2 activity, increased rhTNF-α-induced C-28/I2 chondrocyte apoptosis.

9.
Arthritis Res Ther ; 15(6): R180, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24286485

ABSTRACT

INTRODUCTION: The development of effective treatments for osteoarthritis (OA) has been hampered by a poor understanding of OA at the cellular and molecular levels. Emerging as a disease of the 'whole joint', the importance of the biochemical contribution of various tissues, including synovium, bone and articular cartilage, has become increasingly significant. Bathing the entire joint structure, the proteomic analysis of synovial fluid (SF) from osteoarthritic shoulders offers a valuable 'snapshot' of the biologic environment throughout disease progression. The purpose of this study was to identify differentially expressed proteins in early and late shoulder osteoarthritic SF in comparison to healthy SF. METHODS: A quantitative 18O labeling proteomic approach was employed to identify the dysregulated SF proteins in early (n = 5) and late (n = 4) OA patients compared to control individuals (n = 5). In addition, ELISA was used to quantify six pro-inflammatory and two anti-inflammatory cytokines. RESULTS: Key results include a greater relative abundance of proteins related to the complement system and the extracellular matrix in SF from both early and late OA. Pathway analyses suggests dysregulation of the acute phase response, liver x receptor/retinoid x receptor (LXR/RXR), complement system and coagulation pathways in both early and late OA. The network related to lipid metabolism was down-regulated in both early and late OA. Inflammatory cytokines including interleukin (IL) 6, IL 8 and IL 18 were up-regulated in early and late OA. CONCLUSIONS: The results suggest a dysregulation of wound repair pathways in shoulder OA contributing to the presence of a 'chronic wound' that progresses irreversibly from early to later stages of OA. Protease inhibitors were downregulated in late OA suggesting uncontrolled proteolytic activity occurring in late OA. These results contribute to the theory that protease inhibitors represent promising therapeutic agents which could limit proteolytic activity that ultimately leads to cartilage destruction.


Subject(s)
Osteoarthritis/metabolism , Proteomics , Synovial Fluid/chemistry , Adult , Aged , Blotting, Western , Chromatography, Liquid , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Proteomics/methods , Shoulder , Synovial Fluid/metabolism , Tandem Mass Spectrometry
10.
J Virol ; 80(3): 1191-203, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16414996

ABSTRACT

The human cytomegalovirus (HCMV) US12 gene family is a group of predicted seven-transmembrane, G-protein-coupled receptor-related proteins, about which little is known. Specific rabbit polyclonal antibodies detected US17 and US18 beginning 54 and 36 h after infection, respectively, with expression of both proteins dependent on viral DNA synthesis. While US14 and US18 are expressed exclusively in the cytoplasm, we unexpectedly found abundant expression of US17 in both the cytoplasm and nucleoplasm. N- and C-terminally tagged versions of US17 were readily detected in the cytoplasm of transfected mammalian cells, but not in nuclei, suggesting that nuclear localization involves other viral proteins or an infection-triggered cellular process. There was no specific colocalization between US17 and other nuclear expressed HCMV-encoded proteins (IE-2, DNA polymerase processivity factor, and pp28/UL99). To determine whether the observed nuclear localization might be the product of a process by which a soluble C-terminal segment of the full-length protein is expressed, we constructed a recombinant virus that incorporates a synthetic epitope at its N terminus, which in conjunction with the antipeptide antibody that targets its predicted cytoplasmic C-terminal segment, enables simultaneous independent detection of both termini. In cells infected with the recombinant, the US17 N and C termini had limited colocalization, with the N-terminal segment not detected in nuclei, supporting the segmentation hypothesis. Consistent with this, a fragment with an apparent molecular size of 10 kDa was detected by immunoblotting. We have identified the first viral example of a seven-transmembrane protein that is either segmented or expressed in nuclei. Further study will be required to learn the mechanism by which this occurs and the function of the nuclear localizing segment. This likely represents yet another mechanism by which a virus has hijacked or modified cellular regulatory pathways for its benefit.


Subject(s)
Cytomegalovirus/metabolism , Viral Proteins/metabolism , Animals , Antibodies, Viral/biosynthesis , Base Sequence , Cell Line , Cell Nucleus/virology , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Cytomegalovirus Infections/virology , Cytoplasm/virology , DNA, Viral/genetics , Gene Expression , Genes, Viral , HeLa Cells , Humans , Kinetics , Models, Biological , Nuclear Localization Signals , RNA, Messenger/genetics , RNA, Viral/genetics , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/immunology
11.
Virology ; 354(2): 286-98, 2006 Oct 25.
Article in English | MEDLINE | ID: mdl-16904149

ABSTRACT

Human cytomegalovirus (HCMV; Human herpesvirus 5) and the other betaherpesviruses encode a number of distinct gene families, including the US12 family, which is represented only in the cytomegaloviruses of higher primates, and is comprised of a set of 10 contiguous genes (US12 through US21), each encoding a seven-transmembrane (7TM) protein. Nonessential for replication in cell culture but well-conserved among clinical isolates, little is known of possible US12 family member functions, other than a previously identified amino acid sequence similarity between US21 and a group of 7TM proteins that include known inhibitors of apoptosis, and a very limited description of similarity between US12 family members and G-protein-coupled receptors (GPCR). As a prelude to biochemical analysis, we have conducted a detailed analysis of the relationships among US12 family members and between these proteins and other proteins, particularly GPCR and other 7TM molecules. In most cases, the closest relatives of individual genes are their colinear counterparts in the other viruses. Thus, the initial duplication and divergence events that resulted in the current version of the US12 family preceded divergence of the rhesus and hominoid lineages. Our phylogenetic analysis indicates that the US12 family represents a distinct branch of the 7TM superfamily. Although they are distantly related, at least some of the US12 family members may have GPCR-related properties, but they are also likely to embody functions and mechanisms that differ from more conventional GPCRs. Our analyses suggest that the 7TM structure of US12 family members constitutes a functionally flexible structural scaffold that can be readily adapted to diverse functional ends. This strategy may be the driving force in the emergence of the several families of duplicated and diverged betaherpesvirus genes.


Subject(s)
Cytomegalovirus/metabolism , Membrane Proteins/chemistry , Primates/virology , Viral Envelope Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Animals , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Cytomegalovirus Infections/veterinary , Cytomegalovirus Infections/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Phylogeny , Protein Conformation , Viral Envelope Proteins/genetics , Viral Proteins/genetics , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL