Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Publication year range
1.
Mol Biol (Mosk) ; 58(1): 160-170, 2024.
Article in Russian | MEDLINE | ID: mdl-38943588

ABSTRACT

CRISPR/Cas systems are perspective molecular tools for targeted manipulation with genetic materials, such as gene editing, regulation of gene transcription, modification of epigenome etc. While CRISPR/Cas systems proved to be highly effective for correcting genetic disorders and treating infectious diseases and cancers in experimental settings, clinical translation of these results is hampered by the lack of efficient CRISPR/Cas delivery vehicles. Modern synthetic nanovehicles based on organic and inorganic polymers have many disadvantages, including toxicity issues, the lack of targeted delivery, and complex and expensive production pipelines. In turn, exosomes are secreted biological nanoparticles that exhibit high biocompatibility, physico-chemical stability, and the ability to cross biological barriers. Early clinical trials found no toxicity associated with exosome injections. In the recent years, exosomes have been considered as perspective delivery vehicles for CRISPR/Cas systems in vivo. The aim of this study was to analyze the efficacy of CRISPR/Cas stochastic packaging into exosomes for several human cell lines. Here, we show that Cas9 protein is effectively localized into the compartment of intracellular exosome biogenesis, but stochastic packaging of Cas9 into exosomes turns to be very low (~1%). As such, stochastic packaging of Cas9 protein is very ineffective and cannot be used for gene editing purposes. Developing novel tools and technologies for loading CRISPR/Cas systems into exosomes is needed.


Subject(s)
CRISPR-Cas Systems , Exosomes , Gene Editing , Exosomes/metabolism , Exosomes/genetics , Humans , Gene Editing/methods , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism
2.
Sci Rep ; 7(1): 15548, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138423

ABSTRACT

The 35-kDa Orange Carotenoid Protein (OCP) is responsible for photoprotection in cyanobacteria. It acts as a light intensity sensor and efficient quencher of phycobilisome excitation. Photoactivation triggers large-scale conformational rearrangements to convert OCP from the orange OCPO state to the red active signaling state, OCPR, as demonstrated by various structural methods. Such rearrangements imply a complete, yet reversible separation of structural domains and translocation of the carotenoid. Recently, dynamic crystallography of OCPO suggested the existence of photocycle intermediates with small-scale rearrangements that may trigger further transitions. In this study, we took advantage of single 7 ns laser pulses to study carotenoid absorption transients in OCP on the time-scale from 100 ns to 10 s, which allowed us to detect a red intermediate state preceding the red signaling state, OCPR. In addition, time-resolved fluorescence spectroscopy and the assignment of carotenoid-induced quenching of different tryptophan residues derived thereof revealed a novel orange intermediate state, which appears during the relaxation of photoactivated OCPR to OCPO. Our results show asynchronous changes between the carotenoid- and protein-associated kinetic components in a refined mechanistic model of the OCP photocycle, but also introduce new kinetic signatures for future studies of OCP photoactivity and photoprotection.


Subject(s)
Bacterial Proteins/chemistry , Carotenoids/chemistry , Phycobilisomes/chemistry , Synechocystis/chemistry , Bacterial Proteins/genetics , Carotenoids/radiation effects , Crystallography, X-Ray , Kinetics , Lasers , Light , Models, Molecular , Phycobilisomes/radiation effects , Signal Transduction/radiation effects , Spectrometry, Fluorescence , Synechocystis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL