Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nature ; 596(7870): 133-137, 2021 08.
Article in English | MEDLINE | ID: mdl-34234345

ABSTRACT

The majority of gene transcripts generated by RNA polymerase II in mammalian genomes initiate at CpG island (CGI) promoters1,2, yet our understanding of their regulation remains limited. This is in part due to the incomplete information that we have on transcription factors, their DNA-binding motifs and which genomic binding sites are functional in any given cell type3-5. In addition, there are orphan motifs without known binders, such as the CGCG element, which is associated with highly expressed genes across human tissues and enriched near the transcription start site of a subset of CGI promoters6-8. Here we combine single-molecule footprinting with interaction proteomics to identify BTG3-associated nuclear protein (BANP) as the transcription factor that binds this element in the mouse and human genome. We show that BANP is a strong CGI activator that controls essential metabolic genes in pluripotent stem and terminally differentiated neuronal cells. BANP binding is repelled by DNA methylation of its motif in vitro and in vivo, which epigenetically restricts most binding to CGIs and accounts for differential binding at aberrantly methylated CGI promoters in cancer cells. Upon binding to an unmethylated motif, BANP opens chromatin and phases nucleosomes. These findings establish BANP as a critical activator of a set of essential genes and suggest a model in which the activity of CGI promoters relies on methylation-sensitive transcription factors that are capable of chromatin opening.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly , Chromatin/genetics , Chromatin/metabolism , CpG Islands/genetics , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Base Sequence , Cell Line, Tumor , Chromatin/chemistry , Chromatin Assembly and Disassembly/genetics , DNA Methylation , Gene Expression Regulation , Genes, Essential , Humans , Mice , Single Molecule Imaging
2.
EMBO J ; 40(12): e106818, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33909924

ABSTRACT

Mouse embryonic stem cells (mESCs) are biased toward producing embryonic rather than extraembryonic endoderm fates. Here, we identify the mechanism of this barrier and report that the histone deacetylase Hdac3 and the transcriptional corepressor Dax1 cooperatively limit the lineage repertoire of mESCs by silencing an enhancer of the extraembryonic endoderm-specifying transcription factor Gata6. This restriction is opposed by the pluripotency transcription factors Nr5a2 and Esrrb, which promote cell type conversion. Perturbation of the barrier extends mESC potency and allows formation of 3D spheroids that mimic the spatial segregation of embryonic epiblast and extraembryonic endoderm in early embryos. Overall, this study shows that transcriptional repressors stabilize pluripotency by biasing the equilibrium between embryonic and extraembryonic lineages that is hardwired into the mESC transcriptional network.


Subject(s)
DAX-1 Orphan Nuclear Receptor , Histone Deacetylases , Mouse Embryonic Stem Cells/cytology , Animals , Cell Differentiation , Cells, Cultured , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism , Female , GATA6 Transcription Factor/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Male , Mice , RNA, Small Interfering/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism
3.
Mol Cell ; 60(4): 611-25, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26549683

ABSTRACT

The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira in developing mouse oocytes. We show that chromatin of non-replicative developing oocytes is dynamic and that lack of continuous H3.3/H4 deposition alters chromatin structure, resulting in increased DNase I sensitivity, the accumulation of DNA damage, and a severe fertility phenotype. On the molecular level, abnormal chromatin structure leads to a dramatic decrease in the dynamic range of gene expression, the appearance of spurious transcripts, and inefficient de novo DNA methylation. Our study thus unequivocally shows the importance of continuous histone replacement and chromatin homeostasis for transcriptional regulation and normal developmental progression in a non-replicative system in vivo.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/metabolism , Oogenesis , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , DNA Methylation , Female , Fertilization , Gene Expression Regulation , Mice , Oocytes/metabolism , Transcription, Genetic
4.
Genes Dev ; 29(23): 2449-62, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26584620

ABSTRACT

Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. Using a chromatin immunoprecipitation (ChIP) and genome-wide sequencing (ChIP-seq) protocol optimized for low cell numbers and novel techniques for isolating primary and growing oocytes, profiles were generated for histone modifications implicated in promoting or inhibiting DNA methylation. CGIs destined for DNA methylation show reduced protective H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) in both primary and growing oocytes, while permissive H3K36me3 increases specifically at these CGIs in growing oocytes. Methylome profiling of oocytes deficient in H3K4 demethylase KDM1A or KDM1B indicated that removal of H3K4 methylation is necessary for proper methylation establishment at CGIs. This work represents the first systematic study performing ChIP-seq in oocytes and shows that histone remodeling in the mammalian oocyte helps direct de novo DNA methylation events.


Subject(s)
DNA Methylation , Histone Code , Oocytes/enzymology , Oogenesis/physiology , Animals , Chromatin Immunoprecipitation , CpG Islands , Flow Cytometry , Histone Demethylases/genetics , Histones/metabolism , Mice , Oxidoreductases, N-Demethylating/genetics , Sequence Analysis, DNA
5.
J Biol Chem ; 297(2): 100947, 2021 08.
Article in English | MEDLINE | ID: mdl-34270961

ABSTRACT

Transcription factors (TFs) harboring broad-complex, tramtrack, and bric-a-brac (BTB) domains play important roles in development and disease. These BTB domains are thought to recruit transcriptional modulators to target DNA regions. However, a systematic molecular understanding of the mechanism of action of this TF family is lacking. Here, we identify the zinc finger BTB-TF Zbtb2 from a genetic screen for regulators of exit from pluripotency and demonstrate that its absence perturbs embryonic stem cell differentiation and the gene expression dynamics underlying peri-implantation development. We show that ZBTB2 binds the chromatin remodeler Ep400 to mediate downstream transcription. Independently, the BTB domain directly interacts with nucleosome remodeling and deacetylase and histone chaperone histone regulator A. Nucleosome remodeling and deacetylase recruitment is a common feature of BTB TFs, and based on phylogenetic analysis, we propose that this is a conserved evolutionary property. Binding to UBN2, in contrast, is specific to ZBTB2 and requires a C-terminal extension of the BTB domain. Taken together, this study identifies a BTB-domain TF that recruits chromatin modifiers and a histone chaperone during a developmental cell state transition and defines unique and shared molecular functions of the BTB-domain TF family.


Subject(s)
Repressor Proteins , Transcription Factors , BTB-POZ Domain , Histone Chaperones , Humans , Phylogeny , Zinc Fingers
6.
Nat Methods ; 11(8): 817-820, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25042786

ABSTRACT

We report a single-cell bisulfite sequencing (scBS-seq) method that can be used to accurately measure DNA methylation at up to 48.4% of CpG sites. Embryonic stem cells grown in serum or in 2i medium displayed epigenetic heterogeneity, with '2i-like' cells present in serum culture. Integration of 12 individual mouse oocyte datasets largely recapitulated the whole DNA methylome, which makes scBS-seq a versatile tool to explore DNA methylation in rare cells and heterogeneous populations.


Subject(s)
Epigenesis, Genetic , Genome , Sulfites/chemistry , Animals , DNA Methylation , Mice
7.
Genes Dev ; 23(1): 105-17, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19136628

ABSTRACT

Genomic imprinting requires the differential marking by DNA methylation of genes in male and female gametes. In the female germline, acquisition of methylation imprint marks depends upon the de novo methyltransferase Dnmt3a and its cofactor Dnmt3L, but the reasons why specific sequences are targets for Dnmt3a and Dnmt3L are still poorly understood. Here, we investigate the role of transcription in establishing maternal germline methylation marks. We show that at the Gnas locus, truncating transcripts from the furthest upstream Nesp promoter disrupts oocyte-derived methylation of the differentially methylated regions (DMRs). Transcription through DMRs in oocytes is not restricted to this locus but occurs across the prospective DMRs at many other maternally marked imprinted domains, suggesting a common requirement for transcription events. The transcripts implicated here in gametic methylation are protein-coding, in contrast to the noncoding antisense transcripts involved in the monoallelic silencing of imprinted genes in somatic tissues, although they often initiate from alternative promoters in oocytes. We propose that transcription is a third essential component of the de novo methylation system, which includes optimal CpG spacing and histone modifications, and may be required to create or maintain open chromatin domains to allow the methylation complex access to its preferred targets.


Subject(s)
DNA Methylation/physiology , Genomic Imprinting/genetics , Oocytes/metabolism , Transcription, Genetic/genetics , Alleles , Animals , Chromogranins , Female , GTP-Binding Protein alpha Subunits, Gs/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data
8.
Trends Genet ; 28(1): 33-42, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22019337

ABSTRACT

DNA methylation is a fundamentally important epigenetic modification of the mammalian genome that has widespread influences on gene expression. During germ-cell specification and maturation, epigenetic reprogramming occurs and the DNA methylation landscape is profoundly remodelled. Defects in this process have major consequences for embryonic development and are associated with several genetic disorders. In this review we report our current understanding of the molecular mechanisms associated with de novo DNA methylation in germ cells. We discuss recent discoveries connecting histone modifications, transcription and the DNA methylation machinery, and consider how these new findings could lead to a model for methylation establishment. Elucidating how DNA methylation marks are established in the germline has been a challenge for nearly 20 years, but represents a key step towards a full understanding of several biological processes including genomic imprinting, epigenetic reprogramming and the establishment of the pluripotent state in early embryos.


Subject(s)
DNA Methylation , Germ Cells/metabolism , Animals , Cell Lineage , Epigenesis, Genetic , Genomic Imprinting , Germ Cells/cytology , Humans , Transcription, Genetic
9.
Nat Commun ; 11(1): 2680, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32471981

ABSTRACT

DNA methylation is considered a stable epigenetic mark, yet methylation patterns can vary during differentiation and in diseases such as cancer. Local levels of DNA methylation result from opposing enzymatic activities, the rates of which remain largely unknown. Here we developed a theoretical and experimental framework enabling us to infer methylation and demethylation rates at 860,404 CpGs in mouse embryonic stem cells. We find that enzymatic rates can vary as much as two orders of magnitude between CpGs with identical steady-state DNA methylation. Unexpectedly, de novo and maintenance methylation activity is reduced at transcription factor binding sites, while methylation turnover is elevated in transcribed gene bodies. Furthermore, we show that TET activity contributes substantially more than passive demethylation to establishing low methylation levels at distal enhancers. Taken together, our work unveils a genome-scale map of methylation kinetics, revealing highly variable and context-specific activity for the DNA methylation machinery.


Subject(s)
CpG Islands/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Demethylation , DNA Methylation/genetics , DNA-Binding Proteins/metabolism , Mouse Embryonic Stem Cells/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Binding Sites/genetics , Cell Line , Chromosome Mapping , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Epigenesis, Genetic/genetics , Genome/genetics , Histones/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/metabolism , Transcription, Genetic/genetics , DNA Methyltransferase 3B
10.
Nat Struct Mol Biol ; 26(6): 471-480, 2019 06.
Article in English | MEDLINE | ID: mdl-31133702

ABSTRACT

Current understanding of chromosome folding is largely reliant on chromosome conformation capture (3C)-based experiments, where chromosomal interactions are detected as ligation products after chromatin crosslinking. To measure chromosome structure in vivo, quantitatively and without crosslinking and ligation, we implemented a modified version of DNA adenine methyltransferase identification (DamID) named DamC, which combines DNA methylation-based detection of chromosomal interactions with next-generation sequencing and biophysical modeling of methylation kinetics. DamC performed in mouse embryonic stem cells provides the first in vivo validation of the existence of topologically associating domains (TADs), CTCF loops and confirms 3C-based measurements of the scaling of contact probabilities. Combining DamC with transposon-mediated genomic engineering shows that new loops can be formed between ectopic and endogenous CTCF sites, which redistributes physical interactions within TADs. DamC provides the first crosslinking- and ligation-free demonstration of the existence of key structural features of chromosomes and provides novel insights into how chromosome structure within TADs can be manipulated.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , DNA Methylation , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Animals , Bacterial Proteins/metabolism , Cell Line , Chromatin/chemistry , Chromosomes/chemistry , Chromosomes/metabolism , Mice , Mouse Embryonic Stem Cells/chemistry , Mouse Embryonic Stem Cells/metabolism , Nucleic Acid Conformation , Recombinant Fusion Proteins/metabolism
11.
Cell Stem Cell ; 24(2): 257-270.e8, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30595499

ABSTRACT

Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Differentiation , Lysosomes/metabolism , Signal Transduction , Alleles , Animals , Cell Self Renewal , Female , GTP Phosphohydrolases/metabolism , Genome , Humans , Male , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Phosphorylation , Point Mutation/genetics , Protein Binding , Transcription, Genetic
12.
Methods Mol Biol ; 1712: 87-95, 2018.
Article in English | MEDLINE | ID: mdl-29224070

ABSTRACT

DNA methylation is an epigenetic mark implicated in the regulation of key biological processes. Using high-throughput sequencing technologies and bisulfite-based approaches, it is possible to obtain comprehensive genome-wide maps of the mammalian DNA methylation landscape with a single-nucleotide resolution and absolute quantification. However, these methods were only applicable to bulk populations of cells. Here, we present a protocol to perform whole-genome bisulfite sequencing on single cells (scBS-Seq) using a post-bisulfite adapter tagging approach. In this method, bisulfite treatment is performed prior to library generation in order to both convert unmethylated cytosines and fragment DNA to an appropriate size. Then DNA fragments are pre-amplified with concomitant integration of the sequencing adapters, and libraries are subsequently amplified and indexed by PCR. Using scBS-Seq we can accurately measure DNA methylation at up to 50% of individual CpG sites and 70% of CpG islands.


Subject(s)
DNA Methylation/genetics , Genome-Wide Association Study/methods , Single-Cell Analysis/methods , Sulfites/chemistry , Animals , Cytosine/chemistry , DNA/chemistry , Epigenomics , Gene Library , High-Throughput Nucleotide Sequencing , Humans , Mice , Sequence Analysis, DNA , Whole Genome Sequencing
13.
Methods Mol Biol ; 1708: 161-169, 2018.
Article in English | MEDLINE | ID: mdl-29224144

ABSTRACT

The epigenetic mark 5-methylcytosine confers heritable regulation of gene expression that can be dynamically modulated during transitions in cell fate. With the development of high-throughput sequencing technologies, it is now possible to obtain comprehensive genome-wide maps of the mammalian DNA methylation landscape, but the application of these techniques to limited material remains challenging. Here, we present an optimized protocol to perform whole-genome bisulfite sequencing on low inputs (100-5000 somatic cells) using a post-bisulfite adapter tagging approach. In this strategy, bisulfite treatment is performed prior to library generation in order to both convert unmethylated cytosines and fragment DNA to an appropriate size. Then sequencing adapters are added by complementary strand synthesis using random tetramer priming, and libraries are subsequently amplified by PCR.


Subject(s)
5-Methylcytosine/analysis , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing/methods , Animals , CpG Islands , DNA Methylation , Epigenesis, Genetic , Gene Library , Mice , Sample Size , Sulfites
14.
Cell Syst ; 7(1): 63-76.e12, 2018 07 25.
Article in English | MEDLINE | ID: mdl-30031774

ABSTRACT

Pluripotency is accompanied by the erasure of parental epigenetic memory, with naïve pluripotent cells exhibiting global DNA hypomethylation both in vitro and in vivo. Exit from pluripotency and priming for differentiation into somatic lineages is associated with genome-wide de novo DNA methylation. We show that during this phase, co-expression of enzymes required for DNA methylation turnover, DNMT3s and TETs, promotes cell-to-cell variability in this epigenetic mark. Using a combination of single-cell sequencing and quantitative biophysical modeling, we show that this variability is associated with coherent, genome-scale oscillations in DNA methylation with an amplitude dependent on CpG density. Analysis of parallel single-cell transcriptional and epigenetic profiling provides evidence for oscillatory dynamics both in vitro and in vivo. These observations provide insights into the emergence of epigenetic heterogeneity during early embryo development, indicating that dynamic changes in DNA methylation might influence early cell fate decisions.


Subject(s)
DNA Methylation/physiology , Gene Expression Regulation, Developmental/genetics , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation , Cellular Reprogramming , CpG Islands/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Embryo, Mammalian/cytology , Epigenesis, Genetic/genetics , Epigenomics , Genome , Genomic Imprinting , Germ Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology
15.
Nat Protoc ; 12(3): 534-547, 2017 03.
Article in English | MEDLINE | ID: mdl-28182018

ABSTRACT

DNA methylation (DNAme) is an important epigenetic mark in diverse species. Our current understanding of DNAme is based on measurements from bulk cell samples, which obscures intercellular differences and prevents analyses of rare cell types. Thus, the ability to measure DNAme in single cells has the potential to make important contributions to the understanding of several key biological processes, such as embryonic development, disease progression and aging. We have recently reported a method for generating genome-wide DNAme maps from single cells, using single-cell bisulfite sequencing (scBS-seq), allowing the quantitative measurement of DNAme at up to 50% of CpG dinucleotides throughout the mouse genome. Here we present a detailed protocol for scBS-seq that includes our most recent developments to optimize recovery of CpGs, mapping efficiency and success rate; reduce hands-on time; and increase sample throughput with the option of using an automated liquid handler. We provide step-by-step instructions for each stage of the method, comprising cell lysis and bisulfite (BS) conversion, preamplification and adaptor tagging, library amplification, sequencing and, lastly, alignment and methylation calling. An individual with relevant molecular biology expertise can complete library preparation within 3 d. Subsequent computational steps require 1-3 d for someone with bioinformatics expertise.


Subject(s)
DNA Methylation/drug effects , Genomics/methods , Sequence Analysis, DNA/methods , Single-Cell Analysis/methods , Sulfites/pharmacology , Animals , Base Sequence , CpG Islands/genetics , Mice
16.
Epigenetics Chromatin ; 10: 25, 2017.
Article in English | MEDLINE | ID: mdl-28507606

ABSTRACT

BACKGROUND: Gametogenesis in mammals entails profound re-patterning of the epigenome. In the female germline, DNA methylation is acquired late in oogenesis from an essentially unmethylated baseline and is established largely as a consequence of transcription events. Molecular and functional studies have shown that imprinted genes become methylated at different times during oocyte growth; however, little is known about the kinetics of methylation gain genome wide and the reasons for asynchrony in methylation at imprinted loci. RESULTS: Given the predominant role of transcription, we sought to investigate whether transcription timing is rate limiting for de novo methylation and determines the asynchrony of methylation events. Therefore, we generated genome-wide methylation and transcriptome maps of size-selected, growing oocytes to capture the onset and progression of methylation. We find that most sequence elements, including most classes of transposable elements, acquire methylation at similar rates overall. However, methylation of CpG islands (CGIs) is delayed compared with the genome average and there are reproducible differences amongst CGIs in onset of methylation. Although more highly transcribed genes acquire methylation earlier, the major transitions in the oocyte transcriptome occur well before the de novo methylation phase, indicating that transcription is generally not rate limiting in conferring permissiveness to DNA methylation. Instead, CGI methylation timing negatively correlates with enrichment for histone 3 lysine 4 (H3K4) methylation and dependence on the H3K4 demethylases KDM1A and KDM1B, implicating chromatin remodelling as a major determinant of methylation timing. We also identified differential enrichment of transcription factor binding motifs in CGIs acquiring methylation early or late in oocyte growth. By combining these parameters into multiple regression models, we were able to account for about a fifth of the variation in methylation timing of CGIs. Finally, we show that establishment of non-CpG methylation, which is prevalent in fully grown oocytes, and methylation over non-transcribed regions, are later events in oogenesis. CONCLUSIONS: These results do not support a major role for transcriptional transitions in the time of onset of DNA methylation in the oocyte, but suggest a model in which sequences least dependent on chromatin remodelling are the earliest to become permissive for methylation.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , Oocytes/growth & development , Oogenesis/genetics , Transcription, Genetic , Animals , Chromatin/genetics , Chromatin Assembly and Disassembly , CpG Islands/genetics , Female , Genomic Imprinting/genetics , Germ Cells , Histones/genetics , Mice , Oocytes/metabolism , Transcriptome/genetics
17.
Genome Biol ; 17: 72, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27091476

ABSTRACT

Emerging single-cell epigenomic methods are being developed with the exciting potential to transform our knowledge of gene regulation. Here we review available techniques and future possibilities, arguing that the full potential of single-cell epigenetic studies will be realized through parallel profiling of genomic, transcriptional, and epigenetic information.


Subject(s)
Epigenomics/methods , Single-Cell Analysis/methods , Animals , DNA Methylation , Gene Expression Regulation , Humans
18.
Genome Biol ; 16: 209, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26408185

ABSTRACT

BACKGROUND: Previously, a role was demonstrated for transcription in the acquisition of DNA methylation at imprinted control regions in oocytes. Definition of the oocyte DNA methylome by whole genome approaches revealed that the majority of methylated CpG islands are intragenic and gene bodies are hypermethylated. Yet, the mechanisms by which transcription regulates DNA methylation in oocytes remain unclear. Here, we systematically test the link between transcription and the methylome. RESULTS: We perform deep RNA-Seq and de novo transcriptome assembly at different stages of mouse oogenesis. This reveals thousands of novel non-annotated genes, as well as alternative promoters, for approximately 10 % of reference genes expressed in oocytes. In addition, a large fraction of novel promoters coincide with MaLR and ERVK transposable elements. Integration with our transcriptome assembly reveals that transcription correlates accurately with DNA methylation and accounts for approximately 85-90 % of the methylome. We generate a mouse model in which transcription across the Zac1/Plagl1 locus is abrogated in oocytes, resulting in failure of DNA methylation establishment at all CpGs of this locus. ChIP analysis in oocytes reveals H3K4me2 enrichment at the Zac1 imprinted control region when transcription is ablated, establishing a connection between transcription and chromatin remodeling at CpG islands by histone demethylases. CONCLUSIONS: By precisely defining the mouse oocyte transcriptome, this work not only highlights transcription as a cornerstone of DNA methylation establishment in female germ cells, but also provides an important resource for developmental biology research.


Subject(s)
DNA Methylation , Oocytes/metabolism , Transcriptome , Animals , Cell Cycle Proteins/genetics , Chromatin Assembly and Disassembly , CpG Islands , DNA Transposable Elements , Female , Gene Expression Profiling , Genes, Tumor Suppressor , Genomic Imprinting , High-Throughput Nucleotide Sequencing , Mice , Mice, Transgenic , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Initiation Site
19.
Cell Rep ; 9(6): 1990-2000, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25497087

ABSTRACT

Fertilization triggers global erasure of paternal 5-methylcytosine as part of epigenetic reprogramming during the transition from gametic specialization to totipotency. This involves oxidation by TET3, but our understanding of its targets and the wider context of demethylation is limited to a small fraction of the genome. We employed an optimized bisulfite strategy to generate genome-wide methylation profiles of control and TET3-deficient zygotes, using SNPs to access paternal alleles. This revealed that in addition to pervasive removal from intergenic sequences and most retrotransposons, gene bodies constitute a major target of zygotic demethylation. Methylation loss is associated with zygotic genome activation and at gene bodies is also linked to increased transcriptional noise in early development. Our data map the primary contribution of oxidative demethylation to a subset of gene bodies and intergenic sequences and implicate redundant pathways at many loci. Unexpectedly, we demonstrate that TET3 activity also protects certain CpG islands against methylation buildup.


Subject(s)
DNA Methylation , DNA-Binding Proteins/genetics , Genome , Proto-Oncogene Proteins/genetics , Zygote/metabolism , Animals , CpG Islands , DNA, Intergenic/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Gene Expression Regulation, Developmental , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins/metabolism , Retroelements
20.
Stem Cell Reports ; 2(4): 520-33, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24749075

ABSTRACT

Induced pluripotent stem cells (iPSCs) hold great promise for in vitro generation of disease-relevant cell types, such as mesodiencephalic dopaminergic (mdDA) neurons involved in Parkinson's disease. Although iPSC-derived midbrain DA neurons have been generated, detailed genetic and epigenetic characterizations of such neurons are lacking. The goal of this study was to examine the authenticity of iPSC-derived DA neurons obtained by established protocols. We FACS purified mdDA (Pitx3 (Gfp/+) ) neurons derived from mouse iPSCs and primary mdDA (Pitx3 (Gfp/+) ) neurons to analyze and compare their genetic and epigenetic features. Although iPSC-derived DA neurons largely adopted characteristics of their in vivo counterparts, relevant deviations in global gene expression and DNA methylation were found. Hypermethylated genes, mainly involved in neurodevelopment and basic neuronal functions, consequently showed reduced expression levels. Such abnormalities should be addressed because they might affect unambiguous long-term functionality and hamper the potential of iPSC-derived DA neurons for in vitro disease modeling or cell-based therapy.


Subject(s)
Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Epigenesis, Genetic , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Transcriptome , Animals , Biomarkers , DNA Methylation , Gene Expression , Gene Expression Profiling , Mice , Mice, Transgenic , Organ Specificity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL