Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Article in English | MEDLINE | ID: mdl-39327643

ABSTRACT

BACKGROUND: Current tools to review focused abdominal sonography for trauma (FAST) images for quality have poorly defined grading criteria or are developed to grade the skills of the sonographer and not the examination. The purpose of this study is to establish a grading system with substantial agreement among coders, thereby enabling the development of an automated assessment tool for FAST examinations using artificial intelligence (AI). METHODS: Five coders labeled a set of FAST clips. Each coder was responsible for a different subset of clips (10% of the clips were labeled in triplicate to evaluate intercoder reliability). The clips were labeled with a quality score from 1 (lowest quality) to 5 (highest quality). Clips of 3 or greater were considered passing. An AI training model was developed to score the quality of the FAST examination. The clips were split into a training set, a validation set, and a test set. The predicted scores were rounded to the nearest quality level to distinguish passing from failing clips. RESULTS: A total of 1,514 qualified clips (1,399 passing and 115 failing clips) were evaluated in the final data set. This final data set had a 94% agreement between pairs of coders on the pass/fail prediction, and the set had a Krippendorff α of 66%. The decision threshold can be tuned to achieve the desired tradeoff between precision and sensitivity. Without using the AI model, a reviewer would, on average, examine roughly 25 clips for every 1 failing clip identified. In contrast, using our model with a decision threshold of 0.015, a reviewer would examine roughly five clips for every one failing clip - a fivefold reduction in clips reviewed while still correctly identifying 85% of passing clips. CONCLUSION: Integration of AI holds significant promise in improving the accurate evaluation of FAST images while simultaneously alleviating the workload burden on expert physicians. LEVEL OF EVIDENCE: Diagnostic Test/Criteria; Level II.

2.
J Med Chem ; 67(11): 9709-9730, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38788241

ABSTRACT

Orphan GPR52 is emerging as a promising neurotherapeutic target. Optimization of previously reported lead 4a employing an iterative drug design strategy led to the identification of a series of unique GPR52 agonists, such as 10a (PW0677), 15b (PW0729), and 24f (PW0866), with improved potency and efficacy. Intriguingly, compounds 10a and 24f showed greater bias for G protein/cAMP signaling and induced significantly less in vitro desensitization than parent compound 4a, indicating that reducing GPR52 ß-arrestin activity with biased agonism results in sustained GPR52 activation. Further exploration of compounds 15b and 24f indicated improved potency and efficacy, and excellent target selectivity, but limited brain exposure warranting further optimization. These balanced and biased GPR52 agonists provide important pharmacological tools to study GPR52 activation, signaling bias, and therapeutic potential for neuropsychiatric and neurological diseases.


Subject(s)
Benzamides , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Humans , Animals , Structure-Activity Relationship , Benzamides/pharmacology , Benzamides/chemistry , Benzamides/chemical synthesis , HEK293 Cells , Drug Discovery , Mice , Rats , Signal Transduction/drug effects
3.
Neuropharmacology ; 220: 109251, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36126728

ABSTRACT

Long-term inhibition of kappa opioid receptor (KOR) signaling in peripheral pain-sensing neurons is a potential obstacle for development of peripherally-restricted KOR agonists that produce analgesia. Such a long-term inhibitory mechanism is invoked from activation of c-Jun N-terminal kinase (JNK) that follows a single injection of the KOR antagonist norbinaltorphimine (norBNI). This effect requires protein synthesis of an unknown mediator in peripheral pain-sensing neurons. Using 2D difference gel electrophoresis with tandem mass spectrometry, we have identified that the scaffolding protein 14-3-3γ is upregulated in peripheral sensory neurons following activation of JNK with norBNI. Knockdown of 14-3-3γ by siRNA eliminates the long-term reduction in KOR-mediated cAMP signaling by norBNI in peripheral sensory neurons in culture. Similarly, knockdown of 14-3-3γ in the rat hind paw abolished the norBNI-mediated long-term reduction in peripheral KOR-mediated antinociception. Further, overexpression of 14-3-3γ in KOR expressing CHO cells prevented KOR-mediated inhibition of cAMP signaling. These long-term effects are selective for KOR as heterologous regulation of other receptor systems was not observed. These data suggest that 14-3-3γ is both necessary and sufficient for the long-term inhibition of KOR by norBNI in peripheral sensory neurons.


Subject(s)
JNK Mitogen-Activated Protein Kinases , Receptors, Opioid, kappa , 14-3-3 Proteins , Analgesics , Animals , Cricetinae , Cricetulus , Naltrexone/analogs & derivatives , Pain , RNA, Small Interfering , Rats , Receptors, Opioid, kappa/metabolism
4.
Neuropharmacology ; 216: 109187, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35835212

ABSTRACT

Pain and pain management in the elderly population is a significant social and medical problem. Pain sensation is a complex phenomenon that typically involves activation of peripheral pain-sensing neurons (nociceptors) which send signals to the spinal cord and brain that are interpreted as pain, an unpleasant sensory experience. In this work, young (4-5 months) and aged (26-27 months) Fischer 344 x Brown Norway (F344xBN) rats were examined for nociceptor sensitivity to activation by thermal (cold and heat) and mechanical stimulation following treatment with inflammatory mediators and activators of transient receptor potential (TRP) channels. Unlike other senses that decrease in sensitivity with age, sensitivity of hindpaw nociceptors to thermal and mechanical stimulation was not different between young and aged F344xBN rats. Intraplantar injection of bradykinin (BK) produced greater thermal and mechanical allodynia in aged versus young rats, whereas only mechanical allodynia was greater in aged rats following injection of prostaglandin E2 (PGE2). Intraplantar injection of TRP channel activators, capsaicin (TRPV1), mustard oil (TRPA1) and menthol (TRPM8) each resulted in greater mechanical allodynia in aged versus young rats and capsaicin-induced heat allodynia was also greater in aged rats. A treatment-induced allodynia that was greater in young rats was never observed. The anti-allodynic effects of intraplantar injection of kappa and delta opioid receptor agonists, salvinorin-A and D-Pen2,D-Pen5]enkephalin (DPDPE), respectively, were greater in aged than young rats, whereas mu opioid receptor agonists, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) and morphine, were not effective in aged rats. Consistent with these observations, in primary cultures of peripheral sensory neurons, inhibition of cAMP signaling in response to delta and kappa receptor agonists was greater in cultures derived from aged rats. By contrast, mu receptor agonists did not inhibit cAMP signaling in aged rats. Thus, age-related changes in nociceptors generally favor increased pain signaling in aged versus young rats, suggesting that changes in nociceptor sensitivity may play a role in the increased incidence of pain in the elderly population. These results also suggest that development of peripherally-restricted kappa or delta opioid receptor agonists may provide safer and effective pain relief for the elderly.


Subject(s)
Hyperalgesia , Receptors, Opioid, delta , Aged , Analgesics, Opioid/pharmacology , Animals , Capsaicin/pharmacology , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Enkephalins , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Nociceptors , Pain , Rats , Receptors, Opioid, delta/agonists , Receptors, Opioid, mu/agonists , Sensory Receptor Cells
5.
J Neurosurg Pediatr ; 28(3): 351-359, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34214976

ABSTRACT

OBJECTIVE: Isolated anterior cerebral artery (ACA) territory ischemia in pediatric moyamoya disease (MMD) is rare but has been increasingly recognized, particularly in children manifesting progression of disease in a delayed fashion after middle cerebral artery revascularization surgery. Surgical treatment is complicated by limited graft choices, with the small number of case series largely focused on complex, higher-risk operations (omental flap transfers, large interhemispheric rotational grafts); direct bypass (often untenable in children due to vessel size); or, alternatively, the technically simpler method of multiple burr holes (of limited efficacy outside of infants). Faced with the problem of a growing cohort of pediatric patients with MMD that could benefit from anterior cerebral revascularization, the authors sought to develop a solution that was specifically designed for children and that would be lower risk than the more complex approaches adapted from adult populations but more effective than simple burr holes. In this study, the authors aimed to describe the long-term clinical and radiographic outcomes of a novel approach of pial pericranial dural (PiPeD) revascularization, building on the principles of pial synangiosis but unique in using the pericranium and the dura mater as the primary vascular supply, and employing a larger craniotomy with arachnoid dissection to provide robust full-territory revascularization in all ages with reduced risk relative to more complex procedures. METHODS: The medical records of all pediatric patients with MMD who presented at a single center between July 2009 and August 2019 were retrospectively reviewed to identify patients with MMD with anterior cerebral territory ischemia. Clinical characteristics, surgical indications, operative techniques, and long-term clinical and radiographic follow-up data were collected and analyzed. RESULTS: A total of 25 operations (5.6% of total procedures) were performed in 21 patients (mean age 9.4 years [range 1-16.5 years]; 12 female and 9 male). Almost one-third of the patients had syndromic associations, with no familial cases. Complications included 1 patient (4.7%) with a superficial infection, with no postoperative strokes, hemorrhage, seizures, or deaths. Long-term follow-up was available in 18 of 21 patients (mean 24.9 months [range 4-60 months]). Radiographic engraftment was present in 90.9% (20/22 hemispheres), and no new strokes were evident on MRI on long-term follow-up, despite radiographic progression of the disease. CONCLUSIONS: The use of the pericranium and the dura mater for indirect revascularization provided robust vascularized graft with great flexibility in location and high potential for engraftment, which may obviate more complex and higher-risk operations for ACA territory ischemia. Long-term follow-up demonstrated that PiPeD revascularization conferred durable, long-term radiographic and clinical protection from stroke in pediatric patients with MMD. Based on the results of the current study, the PiPeD technique can be considered an additional tool to the armamentarium of indirect revascularization procedures in select pediatric patients with MMD.

6.
Pharmacol Res Perspect ; 9(6): e00887, 2021 12.
Article in English | MEDLINE | ID: mdl-34713624

ABSTRACT

Opioid overdose is a leading cause of death in the United States. The only treatment available currently is the competitive antagonist, naloxone (Narcan® ). Although naloxone is very effective and has saved many lives, as a competitive antagonist it has limitations. Due to the short half-life of naloxone, renarcotization can occur if the ingested opioid agonist remains in the body longer. Moreover, because antagonism by naloxone is surmountable, renarcotization can also occur in the presence of naloxone if a relatively larger dose of opioid agonist is taken. In such circumstances, a long-lasting, non-surmountable antagonist would offer an improvement in overdose treatment. Methocinnamox (MCAM) has been reported to have a long duration of antagonist action at mu opioid receptors in vivo. In HEK cells expressing the human mu opioid receptor, MCAM antagonism of mu agonist-inhibition of cAMP production was time-dependent, non-surmountable and non-reversible, consistent with (pseudo)-irreversible binding. In vivo, MCAM injected locally into the rat hindpaw antagonized mu agonist-mediated inhibition of thermal allodynia for up to 96 h. By contrast, antagonism by MCAM of delta or kappa agonists in HEK cells and in vivo was consistent with simple competitive antagonism. Surprisingly, MCAM also shifted the concentration-response curves of mu agonists in HEK cells in the absence of receptor reserve in a ligand-dependent manner. The shift in the [D-Ala2 ,N-MePhe4 ,Gly-ol5 ]-enkephalin (DAMGO) concentration-response curve by MCAM was insensitive to naloxone, suggesting that in addition to (pseudo)-irreversible orthosteric antagonism, MCAM acts allosterically to alter the affinity and/or intrinsic efficacy of mu agonists.


Subject(s)
Cinnamates/pharmacology , Morphine Derivatives/pharmacology , Narcotic Antagonists/pharmacology , Receptors, Opioid, mu/antagonists & inhibitors , Allosteric Regulation/drug effects , Animals , Cyclic AMP/metabolism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , HEK293 Cells , Humans , Ligands , Male , Naloxone/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/metabolism , Time Factors
7.
Front Pharmacol ; 11: 552211, 2020.
Article in English | MEDLINE | ID: mdl-33041794

ABSTRACT

Dequalinium is used as an antimicrobial compound for oral health and other microbial infections. Derivatives of dequalinium, the bis-quinolinium cyclophanes UCL 1684 and UCL 1848, are high affinity SK potassium channel antagonists. Here we investigated these compounds as M3 muscarinic receptor (mACHR) antagonists. We used the R-CEPIAer endoplasmic reticulum calcium reporter to functionally assay for Gq-coupled receptor signaling, and investigated the bis-quinolinium cyclophanes as antagonists of M3 mACHR activation in transfected CHO cells. Given mACHR roles in airway smooth muscle (ASM) contractility, we also tested the ability of UCL 1684 to relax ASM. We find that these compounds antagonized M3 mACHRs with an IC50 of 0.27 µM for dequalinium chloride, 1.5 µM for UCL 1684 and 1.0 µM for UCL 1848. UCL 1684 also antagonized M1 (IC50 0.12 µM) and M5 (IC50 0.52 µM) mACHR responses. UCL 1684 was determined to be a competitive antagonist at M3 receptors as it increased the EC50 for carbachol without a reduction in the maximum response. The Ki for UCL1684 determined from competition binding experiments was 909 nM. UCL 1684 reduced carbachol-evoked ASM contractions (>90%, IC50 0.43 µM), and calcium mobilization in rodent and human lung ASM cells. We conclude that dequalinium and bis-quinolinium cyclophanes antagonized M3 mACHR activation at sub- to low micromolar concentrations, with UCL 1684 acting as an ASM relaxant. Caution should be taken when using these compounds to block SK potassium channels, as inhibition of mACHRs may be a side-effect if excessive concentrations are used.

8.
Elife ; 62017 11 10.
Article in English | MEDLINE | ID: mdl-29125463

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) arises from collateral damage to peripheral afferent sensory neurons by anticancer pharmacotherapy, leading to debilitating neuropathic pain. No effective treatment for CIPN exists, short of dose-reduction which worsens cancer prognosis. Here, we report that stimulation of nicotinamide phosphoribosyltransferase (NAMPT) produced robust neuroprotection in an aggressive CIPN model utilizing the frontline anticancer drug, paclitaxel (PTX). Daily treatment of rats with the first-in-class NAMPT stimulator, P7C3-A20, prevented behavioral and histologic indicators of peripheral neuropathy, stimulated tissue NAD recovery, improved general health, and abolished attrition produced by a near maximum-tolerated dose of PTX. Inhibition of NAMPT blocked P7C3-A20-mediated neuroprotection, whereas supplementation with the NAMPT substrate, nicotinamide, potentiated a subthreshold dose of P7C3-A20 to full efficacy. Importantly, P7C3-A20 blocked PTX-induced allodynia in tumored mice without reducing antitumoral efficacy. These findings identify enhancement of NAMPT activity as a promising new therapeutic strategy to protect against anticancer drug-induced peripheral neurotoxicity.


Subject(s)
Antineoplastic Agents, Phytogenic/adverse effects , Carbazoles/administration & dosage , Enzyme Activators/administration & dosage , Neuroprotective Agents/administration & dosage , Nicotinamide Phosphoribosyltransferase/metabolism , Paclitaxel/adverse effects , Peripheral Nervous System Diseases/prevention & control , Animals , Behavior, Animal , Disease Models, Animal , Histocytochemistry , Rats , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL