Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 770
Filter
1.
Nature ; 626(7998): 367-376, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092041

ABSTRACT

Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.


Subject(s)
Embryonic Development , Germ Layers , Hematopoiesis , Yolk Sac , Humans , Embryo Implantation , Endoderm/cytology , Endoderm/embryology , Germ Layers/cytology , Germ Layers/embryology , Yolk Sac/cytology , Yolk Sac/embryology , Mesoderm/cytology , Mesoderm/embryology , Induced Pluripotent Stem Cells/cytology , Amnion/cytology , Amnion/embryology , Embryoid Bodies/cytology , Cell Lineage , Developmental Biology/methods , Developmental Biology/trends
2.
Nucleic Acids Res ; 51(7): e38, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36762475

ABSTRACT

Inference of global gene regulatory networks from omics data is a long-term goal of systems biology. Most methods developed for inferring transcription factor (TF)-gene interactions either relied on a small dataset or used snapshot data which is not suitable for inferring a process that is inherently temporal. Here, we developed a new computational method that combines neural networks and multi-task learning to predict RNA velocity rather than gene expression values. This allows our method to overcome many of the problems faced by prior methods leading to more accurate and more comprehensive set of identified regulatory interactions. Application of our method to atlas scale single cell data from 6 HuBMAP tissues led to several validated and novel predictions and greatly improved on prior methods proposed for this task.


Subject(s)
Computational Biology , Algorithms , Gene Regulatory Networks , Systems Biology , Single-Cell Analysis , Atlases as Topic
3.
Proc Natl Acad Sci U S A ; 119(22): e2203680119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35622887

ABSTRACT

Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.


Subject(s)
Basolateral Nuclear Complex , Emotions , Insular Cortex , Neural Inhibition , Recognition, Psychology , Visual Perception , Animals , Arousal , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/physiology , Cyclic AMP Response Element-Binding Protein/metabolism , Emotions/drug effects , Emotions/physiology , GABA Agonists/pharmacology , Insular Cortex/drug effects , Insular Cortex/physiology , Male , Neural Inhibition/drug effects , Neural Inhibition/physiology , Norepinephrine/administration & dosage , Norepinephrine/pharmacology , Rats , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Visual Perception/physiology
4.
BMC Cancer ; 24(1): 100, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233798

ABSTRACT

BACKGROUND: Immunotherapy targeting PD-1/PD-L1 has revolutionized the treatment of extensive-stage small cell lung cancer (ES-SCLC). However, clinical trials suggest differential efficacy of anti-PD-1 agents and anti-PD-L1 agents in first-line treatment of ES-SCLC. This retrospective multicenter study aimed to compare the efficacy and safety of anti-PD-1 agents versus anti-PD-L1 agents in first-line treatment of ES-SCLC in real-world practice. METHODS: Patients with pathologically or cytologically confirmed ES-SCLC treated with platinum plus etoposide combined with anti-PD-1 or PD-L1 agents as first-line treatment in different centers of PLA General Hospital between January 2017 and October 2021 were included for this study. Survival outcomes and safety were compared between patients receiving anti-PD-1 and PD-L1 agents. RESULTS: Of the total 154 included patients, 68 received anti-PD-1 agents plus chemotherapy (PD-1 group), and 86 received anti-PD-L1 agents plus chemotherapy (PD-L1 group). Progression-free survival (PFS) and overall survival (OS) in the entire cohort were 7.6 months (95% confidence interval [CI]: 6.5-8.2 months) and 17.4 months (95% CI: 15.3-19.3 months), respectively. Median PFS and OS were comparable between the PD-1 group and PD-L1 group (PFS: 7.6 months vs. 8.3 months, HR = 1.13, 95% CI: 0.79-1.62, p = 0.415; OS: 26.9 months vs. 25.6 months, HR = 0.96, 95% CI: 0.63-1.47, p = 0.859. The objective response rate and disease control rate were comparable between the two groups: 79.4% vs. 79.1% and 92.6% vs. 94.2%, respectively. The 6-month, 12-month, and 18-month PFS and OS rates were slightly higher in the PD-L1 group than in the PD-1 group, while the 24-month PFS rate was slightly higher in the PD-1 group than in the PD-L1 group. Stratified analysis showed that locoregional thoracic radiotherapy and normal lactate dehydrogenase level were independent predictors of better OS in ES-SCLC patients treated with first-line chemotherapy plus ICI. Adverse events were not significantly different between the two groups. CONCLUSIONS: Anti-PD-1 agents and anti-PD-L1 agents combined with chemotherapy as first-line treatment for ES-SCLC are comparably effective and well tolerated.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , B7-H1 Antigen , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , Retrospective Studies , Small Cell Lung Carcinoma/drug therapy
5.
Horm Metab Res ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38574667

ABSTRACT

The aim of the study was to explore the clinical features related to early hypothyroidism and the relationship between the changes of thyrotropin receptor antibodies (TRAb) and early hypothyroidism in the course of 131I treatment for Graves' disease. This study was a retrospective observation, including 226 patients who received the first 131I treatment. The general information and laboratory tests were collected before and after 131I treatment, and the laboratory data affecting the difference in disease outcome were analyzed. According to the changes of antibodies in the third month, whether the changes of antibodies were involved in the occurrence of early-onset hypothyroidism was analyzed. Early onset hypothyroidism occurred in 165 of 226 patients, and the results showed that the incidence of early hypothyroidism was higher in patients with low baseline TRAb level (p=0.03) and increased TRAb after treatment (p=0.007). Both baseline TRAb levels (p<0.001) and the 24-hour iodine uptake rate (p=0.004) are significant factors influencing the changes in TRAb. The likelihood of a rise in TRAb was higher when the baseline TRAb was less than 18.55 U/l and the 24-hour iodine uptake level exceeded 63.61%. Low baseline and elevated post-treatment levels of TRAb were significantly associated with early-onset hypothyroidism after 131I treatment. Monitoring this index during RAI treatment is helpful in identifying early-onset hypothyroidism and mastering the clinical outcome and prognosis of Graves' disease.

6.
Pharm Res ; 41(4): 807-817, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443629

ABSTRACT

OBJECTIVE: Current gene therapy of inherited retinal diseases is achieved mainly by subretinal injection, which is invasive with severe adverse effects. Intravitreal injection is a minimally invasive alternative for gene therapy of inherited retinal diseases. This work explores the efficacy of intravitreal delivery of PEGylated ECO (a multifunctional pH-sensitive amphiphilic amino lipid) plasmid DNA (pGRK1-ABCA4-S/MAR) nanoparticles (PEG-ELNP) for gene therapy of Stargardt disease. METHODS: Pigmented Abca4-/- knockout mice received 1 µL of PEG-ELNP solution (200 ng/uL, pDNA concentration) by intravitreal injections at an interval of 1.5 months. The expression of ABCA4 in the retina was determined by RT-PCR and immunohistochemistry at 6 months after the second injection. A2E levels in the treated eyes and untreated controls were determined by HPLC. The safety of treatment was monitored by scanning laser ophthalmoscopy and electroretinogram (ERG). RESULTS: PEG-ELNP resulted in significant ABCA4 expression at both mRNA level and protein level at]6 months after 2 intravitreal injections, and a 40% A2E accumulation reduction compared with non-treated controls. The PEG-ELNP also demonstrated excellent safety as shown by scanning laser ophthalmoscopy, and the eye function evaluation from electroretinogram. CONCLUSIONS: Intravitreal delivery of the PEG-ELNP of pGRK1-ABCA4-S/MAR is a promising approach for gene therapy of Stargardt Disease, which can also be a delivery platform for gene therapy of other inherited retinal diseases.


Subject(s)
Nanoparticles , Retina , Mice , Animals , Stargardt Disease/genetics , Stargardt Disease/metabolism , Stargardt Disease/therapy , Retina/metabolism , Genetic Therapy/methods , Plasmids/genetics , DNA/metabolism , Mice, Knockout , Polyethylene Glycols/metabolism , Intravitreal Injections , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism
7.
Inorg Chem ; 63(17): 7770-7779, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38608286

ABSTRACT

Organic-inorganic hybrid phase-transition materials have attracted widespread attention in energy storage and sensor applications due to their structural adaptability and facile synthesis. However, increasing the phase-transition temperature (Tc) effectively remains a formidable challenge. In this study, we employed a strategy to regulate intermolecular interactions (different types of hydrogen bonds and other weak interactions), utilizing bismuth chloride as an inorganic framework and azetidine, 3,3-difluoro azetidine, and 3-carboxyl azetidine as organic components to synthesize three compounds with different Tc values: [C3H8N]2BiCl5 (1, 234 K), [C3H6NF2]3BiCl6 (2, 256 K), and [C4H8O2N]3BiCl6 (3, 350 K). 1 is a one-dimensional chain structure and 2 and 3 are zero-dimensional structures. Analysis of the crystal structure and the Hirshfeld surface and 2D fingerprints further suggests that the intermolecular forces are efficiently modulated. These findings emphasize the efficacy of our strategy in enhancing Tc and may facilitate further research in this area.

8.
Phys Chem Chem Phys ; 26(25): 17934-17943, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38888322

ABSTRACT

The practical application of Na-based solid-state electrolytes (SSEs) is limited by their low level of conduction. To evaluate the impact of tetrahedral anion groups on carrier migration, we designed a set of anti-perovskite SSEs theoretically based on the previously reported Na4OBr2, including Na4O(BH4)2, Na4O(BF4)2, and Na4O(AlH4)2. It is essential to note that the excessive radius of anionic groups inevitably leads to lattice distortion, resulting in asymmetric migration paths and a limited improvement in carrier migration rate. Na4O(AlH4)2 provides a clear example of where Na+ migrates in two distinct environments. In addition, due to different spatial charge distributions, the interaction strength between anionic groups and Na+ is different. Strong interactions can cause carriers to appear on a swing, leading to a decrease in conductivity. The low conductivity of Na4O(BF4)2 is a typical example. This study demonstrates that Na4O(BH4)2 exhibits remarkable mechanical and dynamic stability and shows ionic conductivity of 1.09 × 10-4 S cm-1, two orders of magnitude higher than that of Na4OBr2. This is attributed to the expansion of the carrier migration channels by the anion groups, the moderate interaction between carriers and anionic groups, and the "paddle-wheel" effect generated by the anion groups, indicating that the "paddle-wheel" effect is still effective in low-dimensional anti-perovskite structures, in which atoms are arranged asymmetrically.

9.
J Biochem Mol Toxicol ; 38(6): e23743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816989

ABSTRACT

UBE2T is an oncogene in varying tumors, including lung adenocarcinoma (LUAD). SORBS3 is an important signaling regulatory protein that plays a crucial role in many cancers. This study aimed to investigate whether UBE2T promoted LUAD development by mediating the ubiquitination of SORBS3 and further explore its mechanism. Bioinformatics analysis was conducted to examine the expression of SORBS3 in LUAD tissues. Cell Counting Kit-8, Transwell, and flow cytometry were employed to analyze the cellular functions of SORBS3. Co-immunoprecipitation and ubiquitination analysis were employed to observe the correlation between UBE2T and SORBS3. In vitro and in vivo experiments verified the role of UBE2T in mediating SORBS3 ubiquitination to enhance interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling and promote LUAD development. We observed significant downregulation of SORBS3 in LUAD tissues and cells. Furthermore, SORBS3 inhibited the proliferation, migration, and invasion of LUAD cells, while facilitating apoptosis in vitro. UBE2T enhanced IL-6/STAT3 signaling by mediating ubiquitination and degradation of SORBS3, thereby promoting LUAD progression. Additionally, this mechanism was further validated in the xenograft animal model in vivo. This study confirmed that UBE2T-mediated SORBS3 ubiquitination enhanced IL-6/STAT3 signaling and promoted LUAD progression, providing a novel therapeutic target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Interleukin-6 , Lung Neoplasms , STAT3 Transcription Factor , Signal Transduction , Ubiquitin-Conjugating Enzymes , Ubiquitination , Humans , STAT3 Transcription Factor/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Interleukin-6/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Mice , Mice, Nude , Disease Progression , Cell Line, Tumor , Female , Mice, Inbred BALB C , Cell Proliferation , Male
10.
J Biochem Mol Toxicol ; 38(1): e23608, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38084607

ABSTRACT

This study aimed to explore the impact of different pH values of resuscitation fluid on traumatic hemorrhagic shock (THS), focusing on their effects on glycocalyx and inflammation. A rat model of THS was induced by hemorrhage from a left femur fracture, while an oxygen-glucose deprivation/reoxygenation (OGD/R)-induced HULEC-5a cell model was considered as an in vitro THS model. The lung tissue pathology and glycocalyx structure were assessed through hematoxylin-eosin (H&E) staining and transmission electron microscope examination. The levels of glycocalyx-related factors and inflammation-related factors were determined by enzyme-linked immunosorbent assay (ELISA). The expression of glycocalyx-related proteins, cell junction-related proteins, and proteins involved in the PI3K/Akt/NF-κB signaling pathway was analyzed by western blot. The results showed that both sodium bicarbonate Ringer's solution (BRS) and lactate Ringer's solution (LRS) were effective in restoring mean arterial pressure and heart rate in THS rats. However, LRS has a stronger impact on promoting inflammation and damaging the glycocalyx compared with BRS. In OGD/R-induced HULEC-5a cells, a pH of 7.4 and 6.5 increased inflammation and disrupted the glycocalyx, while a pH of 8.1 had no significant effect on inflammation or glycocalyx. Furthermore, the PI3K/Akt/NF-κB signaling pathway was activated by fluid resuscitation and different pH values. However, the activating effect of BRS and pH 8.1 on the PI3K/Akt/NF-κB signaling pathway was milder compared with LRS and pH6.5. In conclusion, an alkaline recovery environment was more beneficial for the treatment of THS.


Subject(s)
Lung Injury , Shock, Hemorrhagic , Rats , Animals , Shock, Hemorrhagic/drug therapy , Shock, Hemorrhagic/metabolism , Shock, Hemorrhagic/pathology , Ringer's Solution , Isotonic Solutions/chemistry , Isotonic Solutions/pharmacology , Sodium Bicarbonate , Proto-Oncogene Proteins c-akt , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases , Rats, Sprague-Dawley , Hemorrhage , Ringer's Lactate , Inflammation , Disease Models, Animal
11.
J Nat Prod ; 87(2): 381-387, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38289330

ABSTRACT

Tryptoquivalines are highly toxic metabolites initially isolated from the fungus Aspergillus clavatus. The relative and absolute configuration of tryptoquivaline derivates was primarily established by comparison of the chemical shifts, NOE data, and ECD calculations. A de novo determination of the complete relative configuration using NMR spectroscopy was challenging due to multiple spatially separated stereocenters, including one nonprotonated carbon. In this study, we isolated a new tryptoquivaline derivative, 12S-deoxynortryptoquivaline (1), from the marine ascidian-derived fungus Aspergillus clavatus AS-107. The correct assignment of the relative configuration of 1 was accomplished using anisotropic NMR spectroscopy, while the absolute configuration was determined by comparing calculated and experimental ECD spectra. This case study highlights the effectiveness of anisotropic NMR parameters over isotropic NMR parameters in determining the relative configuration of complex natural products without the need for crystallization.


Subject(s)
Urochordata , Animals , Magnetic Resonance Spectroscopy/methods , Aspergillus/chemistry , Fungi , Molecular Structure
12.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38445728

ABSTRACT

We develop and demonstrate how to use the Graphical Unitary Group Approach (GUGA)-based MRCISD with Core-Valence Separation (CVS) approximation to compute the core-excited states. First, perform a normal Self-Consistent-Field (SCF) or valence MCSCF calculation to optimize the molecular orbitals. Second, rotate the optimized target core orbitals and append to the active space, form an extended CVS active space, and perform a CVS-MCSCF calculation for core-excited states. Finally, construct the CVS-MRCISD expansion space and perform a CVS-MRCISD calculation to optimize the CI coefficients based on the variational method. The CVS approximation with GUGA-based methods can be implemented by flexible truncation of the Distinct Row Table. Eliminating the valence-excited configurations from the CVS-MRCISD expansion space can prevent variational collapse in the Davidson iteration diagonalization. The accuracy of the CVS-MRCISD scheme was investigated for excitation energies and compared with that of the CVS-MCSCF and CVS-CASPT2 methods using the same active space. The results show that CVS-MRCISD is capable of reproducing well-matched vertical core excitation energies that are consistent with experiments by combining large basis sets and a rational reference space. The calculation results also highlight the fact that the dynamic correlation between electrons makes an undeniable contribution in core-excited states.

13.
Appl Opt ; 63(2): 459-466, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38227243

ABSTRACT

The generation and control of the Goos-Hänchen (GH) shift is a vital step toward its realistic applications, but investigations have mainly been limited to the directional-dependent ones; i.e., the GH shift is reciprocal for two opposite propagating directions. Here, by designing the asymmetrical multilayered structure with three-dimensional bulky Dirac semimetal (BDS) films, we theoretically confirm the footprint of the pronounced directional-dependent GH shift, and that it can be switched by the Fermi energy of the BDS. In addition to this electric field induced switching, the period numbers of the unit cells in the asymmetrical structure can also modulate the directional-dependent GH shift. The asymmetrical feature of the multilayered structure dominantly causes the emergence of the directional-dependent GH shift. Our discovery related to the directional-dependent GH shift constitutes an important ingredient for directional-dependent optophotonic devices such as directional sensors, optical switches, and detectors.

14.
Ecotoxicol Environ Saf ; 270: 115831, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38101974

ABSTRACT

Aluminum (Al) exposure significantly interferes with the energy supply in astrocytes, which may be a potential mechanism of Al-induced neurotoxicity. This study was designed to explore the mechanisms of Al-induced energy supply impairment in rat C6 astroglioma cell line. Aluminum-maltolate (Al(mal)3) (0.1 mM, 24 h) exposure significantly decreased brain-type creatine kinase (BCK) co-localization with the endoplasmic reticulum (ER) and resulted in mitochondrial dysfunctions, accompanied by a decrease in AMPK phosphorylation. The results of molecular docking showed that Al(mal)3 increased BCK's hydrophobicity and hindered the localization movement of BCK between subcells·H2O2 co-administration was found to exacerbate mitochondrial dysfunction, Ca2+ dyshomeostasis, and apoptosis. After treated with Al(mal)3, additional oxidative stress contributed to BCK activity inhibition but did not promote a further decrease in AMPK phosphorylation. The activation of p-AMPK by its agonist can partially restore mitochondrial function, BCK activity, and ER-localized-BCK levels in Al(mal)3-treated astrocytes. In summary, Al exposure resulted in a sustained depletion of the mitochondrial and antioxidant systems, which was associated with reduced p-AMPK activity and decreased ER-localized-BCK levels in astrocytes. This study provides a theoretical basis for exploring the mechanisms of neurotoxicity induced by Al exposure.


Subject(s)
AMP-Activated Protein Kinases , Aluminum , Organometallic Compounds , Pyrones , Rats , Animals , AMP-Activated Protein Kinases/metabolism , Aluminum/toxicity , Hydrogen Peroxide , Molecular Docking Simulation , Apoptosis , Oxidative Stress
15.
Int J Neurosci ; : 1-13, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38197183

ABSTRACT

BACKGROUND: To explore the effect of Ganshuang granule on anti-alcoholic and anti-hangover and its potential mechanism. METHODS: SPF SD rats' drunken model and SPF Kunming mice's hangover model were used as models. RESULTS: Ganshuang granule could significantly reduce sleep time, the time to climb in mice, and significantly prolong the tolerance time and shorten sleep time in rats (p < 0.05). The blood ethanol concentration of rats in each administration group was lower than that in the model group at each time point (p < 0.05). Compared with the control group, the activities of ADH and ALDH in the liver of the model group were significantly decreased (p < 0.05); the content of DA and 5-HT in the striatum of the model group was significantly increased (p < 0.05); and the activity of AchE in the hippocampus was significantly decreased (p < 0.05). The above processes could be improved and regulated in the drug administration group. Compared with the control group, there was no significant difference between ADH and ALDH in the serum of the model group (p > 0.05). However, the activities of ADH and ALDH in the liver of drunk rats could be upregulated by Ganshuang granule (p < 0.05). CONCLUSION: Ganshuang granule has the pharmacological effects of anti-alcoholic and anti-hangover, which is related to regulating the activities of ADH and ALDH in the liver, the contents of DA and 5-HT in striatum, and the activity of AchE in the hippocampus.

16.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892283

ABSTRACT

Skeletal muscle grows in response to a combination of genetic and environmental factors, and its growth and development influence the quality of pork. Elucidating the molecular mechanisms regulating the growth and development of skeletal muscle is of great significance to both animal husbandry and farm management. The Jiangquan black pig is an excellent pig breed based on the original Yimeng black pig, importing the genes of the Duroc pig for meat traits, and cultivated through years of scientific selection and breeding. In this study, full-length transcriptome sequencing was performed on three growth stages of Jiangquan black pigs, aiming to study the developmental changes in Jiangquan black pigs at different developmental stages at the molecular level and to screen the key genes affecting the growth of skeletal muscle in Jiangquan black pigs. We performed an enrichment analysis of genes showing differential expression and constructed a protein-protein interaction network with the aim of identifying core genes involved in the development of Jiangquan black pigs. Notably, genes such as TNNI2, TMOD4, PLDIM3, MYOZ1, and MYH1 may be potential regulators of muscle development in Jiangquan black pigs. Our results contribute to the understanding of the molecular mechanisms of skeletal muscle development in this pig breed, which will facilitate molecular breeding efforts and the development of pig breeds to meet the needs of the livestock industry.


Subject(s)
Gene Expression Profiling , Muscle, Skeletal , Transcriptome , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Swine/genetics , Swine/growth & development , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Muscle Development/genetics , Breeding , Protein Interaction Maps/genetics
17.
J Obstet Gynaecol ; 44(1): 2368773, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38934480

ABSTRACT

BACKGROUND: This study aimed to analyse the expression of microRNA-223 (miR-223) in embryo culture medium and its correlation with pregnancy outcomes. METHODS: Two hundred and two patients undergoing in vitro fertilisation/intracytoplasmic sperm injection (IVF/ICSI) were divided into clinical pregnancy group (n = 101) and non-pregnant group (n = 101). The baseline data, clinical indicators, and the expression level of miR-223 in the embryo medium were compared between the two groups. Logistic regression analysis was used to analyse the relationship between each index and the pregnancy outcome. Receiver operator characteristic curve was carried out to evaluate the differential ability of miR-223 in pregnancy status. Bioinformatics methods were used to identify the target genes of miR-223 and elucidate their functions. RESULTS: Compared with pregnancy group, the non-pregnancy group exhibited a reduction in miR-223 expression (p < 0.001). Multivariate analysis revealed that miR-223 reduction was an independent factor for pregnancy failure (p < 0.05). The ROC curve demonstrated the discriminative capability of miR-223 in distinguishing pregnancy and non-pregnancy. In addition, bioinformatics analysis indicated that the target genes of miR-223 were predominantly located in the endocytic vesicle membrane and were primarily enriched in adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathways. CONCLUSION: In this study, levels of miR-223 in the embryo culture medium predicted pregnancy outcomes in subjects undergoing IVF/ICSI. Low expression of miR-223 was a risk factor for adverse pregnancy outcomes in subjects.


In this study, 202 patients who underwent IVF/ICSI were retrospectively analysed and categorised into pregnant and non-pregnant groups based on their pregnancy status. The examination of embryo culture medium samples from both groups revealed that the non-pregnant group exhibited lower miR-223 expression compared to the pregnant group. Subsequent ROC analysis demonstrated the clinical relevance of miR-223 in effectively distinguishing between pregnant and non-pregnant states. Multi-factor analysis further established that the diminished expression of miR-223 independently influenced the likelihood of successful pregnancy.


Subject(s)
Fertilization in Vitro , MicroRNAs , Pregnancy Outcome , Sperm Injections, Intracytoplasmic , Humans , Female , Pregnancy , MicroRNAs/genetics , MicroRNAs/metabolism , Adult , Fertilization in Vitro/methods , Prognosis , ROC Curve , Embryo Culture Techniques
18.
Carcinogenesis ; 44(2): 143-152, 2023 05 26.
Article in English | MEDLINE | ID: mdl-36455238

ABSTRACT

Lung squamous cell carcinoma (LUSC) lacks appropriate prognostic and diagnostic strategies. Available studies suggest the effectiveness of immunotherapy for LUSC, but effective molecular markers are still insufficient. We obtained mRNA expression and clinical information of LUSC samples from The Cancer Genome Atlas (TCGA) database. Enrichment levels of immune-related genes were revealed by single sample gene set enrichment analysis. Then, differentially expressed genes (DEGs) related to immunity were obtained by differential analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. In addition, Cox regression analysis combined with LASSO method was utilized to identify immune-related prognostic genes, and an immune-related prognostic model was constructed. Kaplan-Meier and receiver operating characteristic (ROC) curves were drawn to verify the accuracy of the model. Finally, a nomogram and calibration curve were drawn to predict LUSC patients' survival. Samples were assigned into high-, medium- and low-immune groups. Compared with low- and medium-immune groups, high-immune group enriched more immune cells, with higher immune infiltration degree, and higher expression of immune checkpoints and human leukocyte antigen. DEGs were enriched in biological processes and signaling pathways related to immunity. Eleven genes (ONECUT3, MAGED4, SULT2A1, HPR, S100A5, IRS4, DPP6, FGF8, TEX38, PLAAT1 and CLEC3A) were obtained to construct an immune-related prognostic model. Riskscore served as an independent prognostic factor. Besides, the nomogram prediction model could predict disease progression in LUSC patients. The constructed risk assessment model for LUSC immune-related genes could assess LUSC patients' prognoses with great efficacy, providing guidance for the clinical treatment of LUSC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Prognosis , Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Lung , Lectins, C-Type
19.
Proteins ; 91(9): 1245-1253, 2023 09.
Article in English | MEDLINE | ID: mdl-37186412

ABSTRACT

Understanding the process of protein-RNA interaction is essential for structural biology. The thermodynamic process is an important part to uncover the protein-RNA interaction mechanism. The regulatory networks between protein and RNA in organisms are dominated by the binding or dissociation in the cells. Therefore, determining the binding affinity for protein-RNA complexes can help us to understand the regulation mechanism of protein-RNA interaction. Since it is time-consuming and labor-intensive to determine the binding affinity for protein-RNA complexes by experimental methods, it is necessary and urgent to develop computational methods to predict that. To develop a binding affinity prediction model, first we update the dataset of protein-RNA binding affinity benchmark (PRBAB), which includes 145 complexes now. Second, we extract the structural features based on complex structure, and then we analyze and select the representative structural features to train the regression model. Third, we random select the subset from the PRBAB2.0 to fit the protein-RNA binding affinity determined by experiment. In the end, we tested our model on the nonredundant PDBbind dataset, and the results showed that Pearson correlation coefficient r = .57 and RMSE = 2.51 kcal/mol. The Pearson correlation coefficient achieves 0.7 while removing 5 complex structures with modified residues/nucleotides and metal ions. While testing on ProNAB, the results showed that 71.60% of the prediction achieves Pearson correlation coefficient r = .61 and RMSE = 1.56 kcal/mol with experiment values.


Subject(s)
Benchmarking , Nucleotides , RNA , Research Design , Thermodynamics
20.
Hum Brain Mapp ; 44(11): 4407-4421, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37306031

ABSTRACT

The habenula has been implicated in the pathogenesis of pain and analgesia, while evidence concerning its function in chronic low back pain (cLBP) is sparse. This study aims to investigate the resting-state functional connectivity (rsFC) and effective connectivity of the habenula in 52 patients with cLBP and 52 healthy controls (HCs) and assess the feasibility of distinguishing cLBP from HCs based on connectivity by machine learning methods. Our results indicated significantly enhanced rsFC of the habenula-left superior frontal cortex (SFC), habenula-right thalamus, and habenula-bilateral insular pathways as well as decreased rsFC of the habenula-pons pathway in cLBP patients compared to HCs. Dynamic causal modelling revealed significantly enhanced effective connectivity from the right thalamus to right habenula in cLBP patients compared with HCs. RsFC of the habenula-SFC was positively correlated with pain intensities and Hamilton Depression scores in the cLBP group. RsFC of the habenula-right insula was negatively correlated with pain duration in the cLBP group. Additionally, the combination of the rsFC of the habenula-SFC, habenula-thalamus, and habenula-pons pathways could reliably distinguish cLBP patients from HCs with an accuracy of 75.9% by support vector machine, which was validated in an independent cohort (N = 68, accuracy = 68.8%, p = .001). Linear regression and random forest could also distinguish cLBP and HCs in the independent cohort (accuracy = 73.9 and 55.9%, respectively). Overall, these findings provide evidence that cLBP may be associated with abnormal rsFC and effective connectivity of the habenula, and highlight the promise of machine learning in chronic pain discrimination.


Subject(s)
Chronic Pain , Habenula , Low Back Pain , Humans , Low Back Pain/diagnostic imaging , Low Back Pain/pathology , Magnetic Resonance Imaging/methods , Habenula/diagnostic imaging , Chronic Pain/diagnostic imaging , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL