Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Exp Bot ; 66(20): 6175-89, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26139826

ABSTRACT

Identification of early sulphur (S) deficiency indicators is important for species such as Brassica napus, an S-demanding crop in which yield and the nutritional quality of seeds are negatively affected by S deficiency. Because S is mostly stored as SO4 (2-) in leaf cell vacuoles and can be mobilized during S deficiency, this study investigated the impact of S deprivation on leaf osmotic potential in order to identify compensation processes. Plants were exposed for 28 days to S or to chlorine deprivation in order to differentiate osmotic and metabolic responses. While chlorine deprivation had no significant effects on growth, osmotic potential and nitrogen metabolism, Brassica napus revealed two response periods to S deprivation. The first one occurred during the first 13 days during which plant growth was maintained as a result of vacuolar SO4 (2-) mobilization. In the meantime, leaf osmotic potential of S-deprived plants remained similar to control plants despite a reduction in the SO4 (2-) osmotic contribution, which was fully compensated by an increase in NO3 (-), PO4 (3-) and Cl(-) accumulation. The second response occurred after 13 days of S deprivation with a significant reduction in growth, leaf osmotic potential, NO3 (-) uptake and NO3 (-) reductase activity, whereas amino acids and NO3 (-) were accumulated. This kinetic analysis of S deprivation suggested that a ([Cl(-)]+[NO3 (-)]+[PO4 (3-)]):[SO4 (2-)] ratio could provide a relevant indicator of S deficiency, modified nearly as early as the over-expression of genes encoding SO4 (2-) tonoplastic or plasmalemmal transporters, with the added advantage that it can be easily quantified under field conditions.


Subject(s)
Brassica napus/metabolism , Nitrates/metabolism , Osmosis/physiology , Sulfates/metabolism , Sulfur/deficiency , Plant Leaves/metabolism
2.
Plants (Basel) ; 7(2)2018 Apr 28.
Article in English | MEDLINE | ID: mdl-29710786

ABSTRACT

Determination of S status is very important to detect S deficiency and prevent losses of yield and seed quality. The aim of this study was to investigate the possibility of using the ([Cl−]+[NO3−]+[PO43−]):[SO42−] ratio as an indicator of S nutrition under field conditions in Brassica napus and whether this could be applied to other species. Different S and nitrogen (N) fertilizations were applied on a S deficient field of oilseed rape to harvest mature leaves and analyze their anion and element contents in order to evaluate a new S nutrition indicator and useful threshold values. Large sets of commercial varieties were then used to test S deficiency scenarios. As main results, this study shown that, under field conditions, leaf ([Cl−]+[NO3−]+[PO43−]):[SO42−] ratio was increased by lowering S fertilization, indicating S deficiency. The usefulness of this ratio was also found for other species grown under controlled conditions and it could be simplified by using the elemental ([Cl]+[P]):[S] ratio. Threshold values were determined and used for the clustering of commercial varieties within three groups: S deficient, at risk of S deficiency and S sufficient. The ([Cl]+[P]):[S] ratio quantified under field conditions, can be used as an early and accurate diagnostic tool to manage S fertilization.

3.
PLoS One ; 11(11): e0166910, 2016.
Article in English | MEDLINE | ID: mdl-27870884

ABSTRACT

Under sulfur (S) deficiency, crosstalk between nutrients induced accumulation of other nutrients, particularly molybdenum (Mo). This disturbed balanced between S and Mo could provide a way to detect S deficiency and therefore avoid losses in yield and seed quality in cultivated species. Under hydroponic conditions, S deprivation was applied to Brassica napus to determine the precise kinetics of S and Mo uptake and whether sulfate transporters were involved in Mo uptake. Leaf contents of S and Mo were also quantified in a field-grown S deficient oilseed rape crop with different S and N fertilization applications to evaluate the [Mo]:[S] ratio, as an indicator of S nutrition. To test genericity of this indicator, the [Mo]:[S] ratio was also assessed with other cultivated species under different controlled conditions. During S deprivation, Mo uptake was strongly increased in B. napus. This accumulation was not a result of the induction of the molybdate transporters, Mot1 and Asy, but could be a direct consequence of Sultr1.1 and Sultr1.2 inductions. However, analysis of single mutants of these transporters in Arabidopsis thaliana suggested that other sulfate deficiency responsive transporters may be involved. Under field conditions, Mo content was also increased in leaves by a reduction in S fertilization. The [Mo]:[S] ratio significantly discriminated between the plots with different rates of S fertilization. Threshold values were estimated for the hierarchical clustering of commercial crops according to S status. The use of the [Mo]:[S] ratio was also reliable to detect S deficiency for other cultivated species under controlled conditions. The analysis of the leaf [Mo]:[S] ratio seems to be a practical indicator to detect early S deficiency under field conditions and thus improve S fertilization management.


Subject(s)
Arabidopsis/metabolism , Brassica napus/metabolism , Molybdenum/metabolism , Plant Roots/metabolism , Sulfates/metabolism , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassica napus/genetics , Ion Transport , Plant Roots/genetics
SELECTION OF CITATIONS
SEARCH DETAIL